Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

26x\left(2x-6\right)=96x+3x^{2}-18
Multiply both sides of the equation by 3.
52x^{2}-156x=96x+3x^{2}-18
Use the distributive property to multiply 26x by 2x-6.
52x^{2}-156x-96x=3x^{2}-18
Subtract 96x from both sides.
52x^{2}-252x=3x^{2}-18
Combine -156x and -96x to get -252x.
52x^{2}-252x-3x^{2}=-18
Subtract 3x^{2} from both sides.
49x^{2}-252x=-18
Combine 52x^{2} and -3x^{2} to get 49x^{2}.
49x^{2}-252x+18=0
Add 18 to both sides.
x=\frac{-\left(-252\right)±\sqrt{\left(-252\right)^{2}-4\times 49\times 18}}{2\times 49}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 49 for a, -252 for b, and 18 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-252\right)±\sqrt{63504-4\times 49\times 18}}{2\times 49}
Square -252.
x=\frac{-\left(-252\right)±\sqrt{63504-196\times 18}}{2\times 49}
Multiply -4 times 49.
x=\frac{-\left(-252\right)±\sqrt{63504-3528}}{2\times 49}
Multiply -196 times 18.
x=\frac{-\left(-252\right)±\sqrt{59976}}{2\times 49}
Add 63504 to -3528.
x=\frac{-\left(-252\right)±42\sqrt{34}}{2\times 49}
Take the square root of 59976.
x=\frac{252±42\sqrt{34}}{2\times 49}
The opposite of -252 is 252.
x=\frac{252±42\sqrt{34}}{98}
Multiply 2 times 49.
x=\frac{42\sqrt{34}+252}{98}
Now solve the equation x=\frac{252±42\sqrt{34}}{98} when ± is plus. Add 252 to 42\sqrt{34}.
x=\frac{3\sqrt{34}+18}{7}
Divide 252+42\sqrt{34} by 98.
x=\frac{252-42\sqrt{34}}{98}
Now solve the equation x=\frac{252±42\sqrt{34}}{98} when ± is minus. Subtract 42\sqrt{34} from 252.
x=\frac{18-3\sqrt{34}}{7}
Divide 252-42\sqrt{34} by 98.
x=\frac{3\sqrt{34}+18}{7} x=\frac{18-3\sqrt{34}}{7}
The equation is now solved.
26x\left(2x-6\right)=96x+3x^{2}-18
Multiply both sides of the equation by 3.
52x^{2}-156x=96x+3x^{2}-18
Use the distributive property to multiply 26x by 2x-6.
52x^{2}-156x-96x=3x^{2}-18
Subtract 96x from both sides.
52x^{2}-252x=3x^{2}-18
Combine -156x and -96x to get -252x.
52x^{2}-252x-3x^{2}=-18
Subtract 3x^{2} from both sides.
49x^{2}-252x=-18
Combine 52x^{2} and -3x^{2} to get 49x^{2}.
\frac{49x^{2}-252x}{49}=-\frac{18}{49}
Divide both sides by 49.
x^{2}+\left(-\frac{252}{49}\right)x=-\frac{18}{49}
Dividing by 49 undoes the multiplication by 49.
x^{2}-\frac{36}{7}x=-\frac{18}{49}
Reduce the fraction \frac{-252}{49} to lowest terms by extracting and canceling out 7.
x^{2}-\frac{36}{7}x+\left(-\frac{18}{7}\right)^{2}=-\frac{18}{49}+\left(-\frac{18}{7}\right)^{2}
Divide -\frac{36}{7}, the coefficient of the x term, by 2 to get -\frac{18}{7}. Then add the square of -\frac{18}{7} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{36}{7}x+\frac{324}{49}=\frac{-18+324}{49}
Square -\frac{18}{7} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{36}{7}x+\frac{324}{49}=\frac{306}{49}
Add -\frac{18}{49} to \frac{324}{49} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{18}{7}\right)^{2}=\frac{306}{49}
Factor x^{2}-\frac{36}{7}x+\frac{324}{49}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{18}{7}\right)^{2}}=\sqrt{\frac{306}{49}}
Take the square root of both sides of the equation.
x-\frac{18}{7}=\frac{3\sqrt{34}}{7} x-\frac{18}{7}=-\frac{3\sqrt{34}}{7}
Simplify.
x=\frac{3\sqrt{34}+18}{7} x=\frac{18-3\sqrt{34}}{7}
Add \frac{18}{7} to both sides of the equation.