Solve for n
n=\frac{x}{2}
x\neq 0
Solve for x
x=2n
n\neq 0
Graph
Share
Copied to clipboard
26n+x\left(-10\right)=3x
Multiply both sides of the equation by x.
26n=3x-x\left(-10\right)
Subtract x\left(-10\right) from both sides.
26n=13x
Combine 3x and -x\left(-10\right) to get 13x.
\frac{26n}{26}=\frac{13x}{26}
Divide both sides by 26.
n=\frac{13x}{26}
Dividing by 26 undoes the multiplication by 26.
n=\frac{x}{2}
Divide 13x by 26.
26n+x\left(-10\right)=3x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
26n+x\left(-10\right)-3x=0
Subtract 3x from both sides.
26n-13x=0
Combine x\left(-10\right) and -3x to get -13x.
-13x=-26n
Subtract 26n from both sides. Anything subtracted from zero gives its negation.
\frac{-13x}{-13}=-\frac{26n}{-13}
Divide both sides by -13.
x=-\frac{26n}{-13}
Dividing by -13 undoes the multiplication by -13.
x=2n
Divide -26n by -13.
x=2n\text{, }x\neq 0
Variable x cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}