Evaluate
\frac{1299}{206}\approx 6.305825243
Factor
\frac{3 \cdot 433}{2 \cdot 103} = 6\frac{63}{206} = 6.305825242718447
Share
Copied to clipboard
\begin{array}{l}\phantom{412)}\phantom{1}\\412\overline{)2598}\\\end{array}
Use the 1^{st} digit 2 from dividend 2598
\begin{array}{l}\phantom{412)}0\phantom{2}\\412\overline{)2598}\\\end{array}
Since 2 is less than 412, use the next digit 5 from dividend 2598 and add 0 to the quotient
\begin{array}{l}\phantom{412)}0\phantom{3}\\412\overline{)2598}\\\end{array}
Use the 2^{nd} digit 5 from dividend 2598
\begin{array}{l}\phantom{412)}00\phantom{4}\\412\overline{)2598}\\\end{array}
Since 25 is less than 412, use the next digit 9 from dividend 2598 and add 0 to the quotient
\begin{array}{l}\phantom{412)}00\phantom{5}\\412\overline{)2598}\\\end{array}
Use the 3^{rd} digit 9 from dividend 2598
\begin{array}{l}\phantom{412)}000\phantom{6}\\412\overline{)2598}\\\end{array}
Since 259 is less than 412, use the next digit 8 from dividend 2598 and add 0 to the quotient
\begin{array}{l}\phantom{412)}000\phantom{7}\\412\overline{)2598}\\\end{array}
Use the 4^{th} digit 8 from dividend 2598
\begin{array}{l}\phantom{412)}0006\phantom{8}\\412\overline{)2598}\\\phantom{412)}\underline{\phantom{}2472\phantom{}}\\\phantom{412)9}126\\\end{array}
Find closest multiple of 412 to 2598. We see that 6 \times 412 = 2472 is the nearest. Now subtract 2472 from 2598 to get reminder 126. Add 6 to quotient.
\text{Quotient: }6 \text{Reminder: }126
Since 126 is less than 412, stop the division. The reminder is 126. The topmost line 0006 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}