Evaluate
\frac{259}{80}=3.2375
Factor
\frac{7 \cdot 37}{2 ^ {4} \cdot 5} = 3\frac{19}{80} = 3.2375
Share
Copied to clipboard
\begin{array}{l}\phantom{80)}\phantom{1}\\80\overline{)259}\\\end{array}
Use the 1^{st} digit 2 from dividend 259
\begin{array}{l}\phantom{80)}0\phantom{2}\\80\overline{)259}\\\end{array}
Since 2 is less than 80, use the next digit 5 from dividend 259 and add 0 to the quotient
\begin{array}{l}\phantom{80)}0\phantom{3}\\80\overline{)259}\\\end{array}
Use the 2^{nd} digit 5 from dividend 259
\begin{array}{l}\phantom{80)}00\phantom{4}\\80\overline{)259}\\\end{array}
Since 25 is less than 80, use the next digit 9 from dividend 259 and add 0 to the quotient
\begin{array}{l}\phantom{80)}00\phantom{5}\\80\overline{)259}\\\end{array}
Use the 3^{rd} digit 9 from dividend 259
\begin{array}{l}\phantom{80)}003\phantom{6}\\80\overline{)259}\\\phantom{80)}\underline{\phantom{}240\phantom{}}\\\phantom{80)9}19\\\end{array}
Find closest multiple of 80 to 259. We see that 3 \times 80 = 240 is the nearest. Now subtract 240 from 259 to get reminder 19. Add 3 to quotient.
\text{Quotient: }3 \text{Reminder: }19
Since 19 is less than 80, stop the division. The reminder is 19. The topmost line 003 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}