Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{257}{4}x^{2}-4x-65=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times \frac{257}{4}\left(-65\right)}}{2\times \frac{257}{4}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{257}{4} for a, -4 for b, and -65 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\times \frac{257}{4}\left(-65\right)}}{2\times \frac{257}{4}}
Square -4.
x=\frac{-\left(-4\right)±\sqrt{16-257\left(-65\right)}}{2\times \frac{257}{4}}
Multiply -4 times \frac{257}{4}.
x=\frac{-\left(-4\right)±\sqrt{16+16705}}{2\times \frac{257}{4}}
Multiply -257 times -65.
x=\frac{-\left(-4\right)±\sqrt{16721}}{2\times \frac{257}{4}}
Add 16 to 16705.
x=\frac{4±\sqrt{16721}}{2\times \frac{257}{4}}
The opposite of -4 is 4.
x=\frac{4±\sqrt{16721}}{\frac{257}{2}}
Multiply 2 times \frac{257}{4}.
x=\frac{\sqrt{16721}+4}{\frac{257}{2}}
Now solve the equation x=\frac{4±\sqrt{16721}}{\frac{257}{2}} when ± is plus. Add 4 to \sqrt{16721}.
x=\frac{2\sqrt{16721}+8}{257}
Divide 4+\sqrt{16721} by \frac{257}{2} by multiplying 4+\sqrt{16721} by the reciprocal of \frac{257}{2}.
x=\frac{4-\sqrt{16721}}{\frac{257}{2}}
Now solve the equation x=\frac{4±\sqrt{16721}}{\frac{257}{2}} when ± is minus. Subtract \sqrt{16721} from 4.
x=\frac{8-2\sqrt{16721}}{257}
Divide 4-\sqrt{16721} by \frac{257}{2} by multiplying 4-\sqrt{16721} by the reciprocal of \frac{257}{2}.
x=\frac{2\sqrt{16721}+8}{257} x=\frac{8-2\sqrt{16721}}{257}
The equation is now solved.
\frac{257}{4}x^{2}-4x-65=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{257}{4}x^{2}-4x-65-\left(-65\right)=-\left(-65\right)
Add 65 to both sides of the equation.
\frac{257}{4}x^{2}-4x=-\left(-65\right)
Subtracting -65 from itself leaves 0.
\frac{257}{4}x^{2}-4x=65
Subtract -65 from 0.
\frac{\frac{257}{4}x^{2}-4x}{\frac{257}{4}}=\frac{65}{\frac{257}{4}}
Divide both sides of the equation by \frac{257}{4}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\left(-\frac{4}{\frac{257}{4}}\right)x=\frac{65}{\frac{257}{4}}
Dividing by \frac{257}{4} undoes the multiplication by \frac{257}{4}.
x^{2}-\frac{16}{257}x=\frac{65}{\frac{257}{4}}
Divide -4 by \frac{257}{4} by multiplying -4 by the reciprocal of \frac{257}{4}.
x^{2}-\frac{16}{257}x=\frac{260}{257}
Divide 65 by \frac{257}{4} by multiplying 65 by the reciprocal of \frac{257}{4}.
x^{2}-\frac{16}{257}x+\left(-\frac{8}{257}\right)^{2}=\frac{260}{257}+\left(-\frac{8}{257}\right)^{2}
Divide -\frac{16}{257}, the coefficient of the x term, by 2 to get -\frac{8}{257}. Then add the square of -\frac{8}{257} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{16}{257}x+\frac{64}{66049}=\frac{260}{257}+\frac{64}{66049}
Square -\frac{8}{257} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{16}{257}x+\frac{64}{66049}=\frac{66884}{66049}
Add \frac{260}{257} to \frac{64}{66049} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{8}{257}\right)^{2}=\frac{66884}{66049}
Factor x^{2}-\frac{16}{257}x+\frac{64}{66049}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{8}{257}\right)^{2}}=\sqrt{\frac{66884}{66049}}
Take the square root of both sides of the equation.
x-\frac{8}{257}=\frac{2\sqrt{16721}}{257} x-\frac{8}{257}=-\frac{2\sqrt{16721}}{257}
Simplify.
x=\frac{2\sqrt{16721}+8}{257} x=\frac{8-2\sqrt{16721}}{257}
Add \frac{8}{257} to both sides of the equation.