Evaluate
\frac{255}{71}\approx 3.591549296
Factor
\frac{3 \cdot 5 \cdot 17}{71} = 3\frac{42}{71} = 3.591549295774648
Share
Copied to clipboard
\begin{array}{l}\phantom{71)}\phantom{1}\\71\overline{)255}\\\end{array}
Use the 1^{st} digit 2 from dividend 255
\begin{array}{l}\phantom{71)}0\phantom{2}\\71\overline{)255}\\\end{array}
Since 2 is less than 71, use the next digit 5 from dividend 255 and add 0 to the quotient
\begin{array}{l}\phantom{71)}0\phantom{3}\\71\overline{)255}\\\end{array}
Use the 2^{nd} digit 5 from dividend 255
\begin{array}{l}\phantom{71)}00\phantom{4}\\71\overline{)255}\\\end{array}
Since 25 is less than 71, use the next digit 5 from dividend 255 and add 0 to the quotient
\begin{array}{l}\phantom{71)}00\phantom{5}\\71\overline{)255}\\\end{array}
Use the 3^{rd} digit 5 from dividend 255
\begin{array}{l}\phantom{71)}003\phantom{6}\\71\overline{)255}\\\phantom{71)}\underline{\phantom{}213\phantom{}}\\\phantom{71)9}42\\\end{array}
Find closest multiple of 71 to 255. We see that 3 \times 71 = 213 is the nearest. Now subtract 213 from 255 to get reminder 42. Add 3 to quotient.
\text{Quotient: }3 \text{Reminder: }42
Since 42 is less than 71, stop the division. The reminder is 42. The topmost line 003 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}