Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Share

\begin{array}{l}\phantom{20)}\phantom{1}\\20\overline{)254560}\\\end{array}
Use the 1^{st} digit 2 from dividend 254560
\begin{array}{l}\phantom{20)}0\phantom{2}\\20\overline{)254560}\\\end{array}
Since 2 is less than 20, use the next digit 5 from dividend 254560 and add 0 to the quotient
\begin{array}{l}\phantom{20)}0\phantom{3}\\20\overline{)254560}\\\end{array}
Use the 2^{nd} digit 5 from dividend 254560
\begin{array}{l}\phantom{20)}01\phantom{4}\\20\overline{)254560}\\\phantom{20)}\underline{\phantom{}20\phantom{9999}}\\\phantom{20)9}5\\\end{array}
Find closest multiple of 20 to 25. We see that 1 \times 20 = 20 is the nearest. Now subtract 20 from 25 to get reminder 5. Add 1 to quotient.
\begin{array}{l}\phantom{20)}01\phantom{5}\\20\overline{)254560}\\\phantom{20)}\underline{\phantom{}20\phantom{9999}}\\\phantom{20)9}54\\\end{array}
Use the 3^{rd} digit 4 from dividend 254560
\begin{array}{l}\phantom{20)}012\phantom{6}\\20\overline{)254560}\\\phantom{20)}\underline{\phantom{}20\phantom{9999}}\\\phantom{20)9}54\\\phantom{20)}\underline{\phantom{9}40\phantom{999}}\\\phantom{20)9}14\\\end{array}
Find closest multiple of 20 to 54. We see that 2 \times 20 = 40 is the nearest. Now subtract 40 from 54 to get reminder 14. Add 2 to quotient.
\begin{array}{l}\phantom{20)}012\phantom{7}\\20\overline{)254560}\\\phantom{20)}\underline{\phantom{}20\phantom{9999}}\\\phantom{20)9}54\\\phantom{20)}\underline{\phantom{9}40\phantom{999}}\\\phantom{20)9}145\\\end{array}
Use the 4^{th} digit 5 from dividend 254560
\begin{array}{l}\phantom{20)}0127\phantom{8}\\20\overline{)254560}\\\phantom{20)}\underline{\phantom{}20\phantom{9999}}\\\phantom{20)9}54\\\phantom{20)}\underline{\phantom{9}40\phantom{999}}\\\phantom{20)9}145\\\phantom{20)}\underline{\phantom{9}140\phantom{99}}\\\phantom{20)999}5\\\end{array}
Find closest multiple of 20 to 145. We see that 7 \times 20 = 140 is the nearest. Now subtract 140 from 145 to get reminder 5. Add 7 to quotient.
\begin{array}{l}\phantom{20)}0127\phantom{9}\\20\overline{)254560}\\\phantom{20)}\underline{\phantom{}20\phantom{9999}}\\\phantom{20)9}54\\\phantom{20)}\underline{\phantom{9}40\phantom{999}}\\\phantom{20)9}145\\\phantom{20)}\underline{\phantom{9}140\phantom{99}}\\\phantom{20)999}56\\\end{array}
Use the 5^{th} digit 6 from dividend 254560
\begin{array}{l}\phantom{20)}01272\phantom{10}\\20\overline{)254560}\\\phantom{20)}\underline{\phantom{}20\phantom{9999}}\\\phantom{20)9}54\\\phantom{20)}\underline{\phantom{9}40\phantom{999}}\\\phantom{20)9}145\\\phantom{20)}\underline{\phantom{9}140\phantom{99}}\\\phantom{20)999}56\\\phantom{20)}\underline{\phantom{999}40\phantom{9}}\\\phantom{20)999}16\\\end{array}
Find closest multiple of 20 to 56. We see that 2 \times 20 = 40 is the nearest. Now subtract 40 from 56 to get reminder 16. Add 2 to quotient.
\begin{array}{l}\phantom{20)}01272\phantom{11}\\20\overline{)254560}\\\phantom{20)}\underline{\phantom{}20\phantom{9999}}\\\phantom{20)9}54\\\phantom{20)}\underline{\phantom{9}40\phantom{999}}\\\phantom{20)9}145\\\phantom{20)}\underline{\phantom{9}140\phantom{99}}\\\phantom{20)999}56\\\phantom{20)}\underline{\phantom{999}40\phantom{9}}\\\phantom{20)999}160\\\end{array}
Use the 6^{th} digit 0 from dividend 254560
\begin{array}{l}\phantom{20)}012728\phantom{12}\\20\overline{)254560}\\\phantom{20)}\underline{\phantom{}20\phantom{9999}}\\\phantom{20)9}54\\\phantom{20)}\underline{\phantom{9}40\phantom{999}}\\\phantom{20)9}145\\\phantom{20)}\underline{\phantom{9}140\phantom{99}}\\\phantom{20)999}56\\\phantom{20)}\underline{\phantom{999}40\phantom{9}}\\\phantom{20)999}160\\\phantom{20)}\underline{\phantom{999}160\phantom{}}\\\phantom{20)999999}0\\\end{array}
Find closest multiple of 20 to 160. We see that 8 \times 20 = 160 is the nearest. Now subtract 160 from 160 to get reminder 0. Add 8 to quotient.
\text{Quotient: }12728 \text{Reminder: }0
Since 0 is less than 20, stop the division. The reminder is 0. The topmost line 012728 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 12728.