Evaluate
\frac{254}{29}\approx 8.75862069
Factor
\frac{2 \cdot 127}{29} = 8\frac{22}{29} = 8.758620689655173
Share
Copied to clipboard
\begin{array}{l}\phantom{29)}\phantom{1}\\29\overline{)254}\\\end{array}
Use the 1^{st} digit 2 from dividend 254
\begin{array}{l}\phantom{29)}0\phantom{2}\\29\overline{)254}\\\end{array}
Since 2 is less than 29, use the next digit 5 from dividend 254 and add 0 to the quotient
\begin{array}{l}\phantom{29)}0\phantom{3}\\29\overline{)254}\\\end{array}
Use the 2^{nd} digit 5 from dividend 254
\begin{array}{l}\phantom{29)}00\phantom{4}\\29\overline{)254}\\\end{array}
Since 25 is less than 29, use the next digit 4 from dividend 254 and add 0 to the quotient
\begin{array}{l}\phantom{29)}00\phantom{5}\\29\overline{)254}\\\end{array}
Use the 3^{rd} digit 4 from dividend 254
\begin{array}{l}\phantom{29)}008\phantom{6}\\29\overline{)254}\\\phantom{29)}\underline{\phantom{}232\phantom{}}\\\phantom{29)9}22\\\end{array}
Find closest multiple of 29 to 254. We see that 8 \times 29 = 232 is the nearest. Now subtract 232 from 254 to get reminder 22. Add 8 to quotient.
\text{Quotient: }8 \text{Reminder: }22
Since 22 is less than 29, stop the division. The reminder is 22. The topmost line 008 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}