\frac { 250 ^ { \circ } } { ( 1 + 10.25 \% ) ^ { 4 } } + \frac { 2500 } { ( 1 + 10.25 \% ) ^ { 8 } } + \frac { 2500 } { ( 1 + 10.25 \% ) ^ { 12 } } + \frac { 2500 } { ( 1 + 10.25 \% ) ^ { 16 } }
Evaluate
\frac{5350283738799810740356394196882438400000000000}{2046526777500669368329342638102622164679041}\approx 2614.323837645
Factor
\frac{47 \cdot 547 \cdot 3709 \cdot 18521 \cdot 233321477 \cdot 2028783359453 \cdot 2 ^ {17} \cdot 5 ^ {11}}{3 ^ {32} \cdot 7 ^ {32}} = 2614\frac{6.627424130607537 \times 10^{41}}{2.0465267775006692 \times 10^{42}} = 2614.3238376454915
Share
Copied to clipboard
\frac{250}{\left(1+\frac{1025}{10000}\right)^{4}}+\frac{2500}{\left(1+\frac{10.25}{100}\right)^{8}}+\frac{2500}{\left(1+\frac{10.25}{100}\right)^{12}}+\frac{2500}{\left(1+\frac{10.25}{100}\right)^{16}}
Expand \frac{10.25}{100} by multiplying both numerator and the denominator by 100.
\frac{250}{\left(1+\frac{41}{400}\right)^{4}}+\frac{2500}{\left(1+\frac{10.25}{100}\right)^{8}}+\frac{2500}{\left(1+\frac{10.25}{100}\right)^{12}}+\frac{2500}{\left(1+\frac{10.25}{100}\right)^{16}}
Reduce the fraction \frac{1025}{10000} to lowest terms by extracting and canceling out 25.
\frac{250}{\left(\frac{441}{400}\right)^{4}}+\frac{2500}{\left(1+\frac{10.25}{100}\right)^{8}}+\frac{2500}{\left(1+\frac{10.25}{100}\right)^{12}}+\frac{2500}{\left(1+\frac{10.25}{100}\right)^{16}}
Add 1 and \frac{41}{400} to get \frac{441}{400}.
\frac{250}{\frac{37822859361}{25600000000}}+\frac{2500}{\left(1+\frac{10.25}{100}\right)^{8}}+\frac{2500}{\left(1+\frac{10.25}{100}\right)^{12}}+\frac{2500}{\left(1+\frac{10.25}{100}\right)^{16}}
Calculate \frac{441}{400} to the power of 4 and get \frac{37822859361}{25600000000}.
250\times \frac{25600000000}{37822859361}+\frac{2500}{\left(1+\frac{10.25}{100}\right)^{8}}+\frac{2500}{\left(1+\frac{10.25}{100}\right)^{12}}+\frac{2500}{\left(1+\frac{10.25}{100}\right)^{16}}
Divide 250 by \frac{37822859361}{25600000000} by multiplying 250 by the reciprocal of \frac{37822859361}{25600000000}.
\frac{6400000000000}{37822859361}+\frac{2500}{\left(1+\frac{10.25}{100}\right)^{8}}+\frac{2500}{\left(1+\frac{10.25}{100}\right)^{12}}+\frac{2500}{\left(1+\frac{10.25}{100}\right)^{16}}
Multiply 250 and \frac{25600000000}{37822859361} to get \frac{6400000000000}{37822859361}.
\frac{6400000000000}{37822859361}+\frac{2500}{\left(1+\frac{1025}{10000}\right)^{8}}+\frac{2500}{\left(1+\frac{10.25}{100}\right)^{12}}+\frac{2500}{\left(1+\frac{10.25}{100}\right)^{16}}
Expand \frac{10.25}{100} by multiplying both numerator and the denominator by 100.
\frac{6400000000000}{37822859361}+\frac{2500}{\left(1+\frac{41}{400}\right)^{8}}+\frac{2500}{\left(1+\frac{10.25}{100}\right)^{12}}+\frac{2500}{\left(1+\frac{10.25}{100}\right)^{16}}
Reduce the fraction \frac{1025}{10000} to lowest terms by extracting and canceling out 25.
\frac{6400000000000}{37822859361}+\frac{2500}{\left(\frac{441}{400}\right)^{8}}+\frac{2500}{\left(1+\frac{10.25}{100}\right)^{12}}+\frac{2500}{\left(1+\frac{10.25}{100}\right)^{16}}
Add 1 and \frac{41}{400} to get \frac{441}{400}.
\frac{6400000000000}{37822859361}+\frac{2500}{\frac{1430568690241985328321}{655360000000000000000}}+\frac{2500}{\left(1+\frac{10.25}{100}\right)^{12}}+\frac{2500}{\left(1+\frac{10.25}{100}\right)^{16}}
Calculate \frac{441}{400} to the power of 8 and get \frac{1430568690241985328321}{655360000000000000000}.
\frac{6400000000000}{37822859361}+2500\times \frac{655360000000000000000}{1430568690241985328321}+\frac{2500}{\left(1+\frac{10.25}{100}\right)^{12}}+\frac{2500}{\left(1+\frac{10.25}{100}\right)^{16}}
Divide 2500 by \frac{1430568690241985328321}{655360000000000000000} by multiplying 2500 by the reciprocal of \frac{1430568690241985328321}{655360000000000000000}.
\frac{6400000000000}{37822859361}+\frac{1638400000000000000000000}{1430568690241985328321}+\frac{2500}{\left(1+\frac{10.25}{100}\right)^{12}}+\frac{2500}{\left(1+\frac{10.25}{100}\right)^{16}}
Multiply 2500 and \frac{655360000000000000000}{1430568690241985328321} to get \frac{1638400000000000000000000}{1430568690241985328321}.
\frac{1880466299910400000000000}{1430568690241985328321}+\frac{2500}{\left(1+\frac{10.25}{100}\right)^{12}}+\frac{2500}{\left(1+\frac{10.25}{100}\right)^{16}}
Add \frac{6400000000000}{37822859361} and \frac{1638400000000000000000000}{1430568690241985328321} to get \frac{1880466299910400000000000}{1430568690241985328321}.
\frac{1880466299910400000000000}{1430568690241985328321}+\frac{2500}{\left(1+\frac{1025}{10000}\right)^{12}}+\frac{2500}{\left(1+\frac{10.25}{100}\right)^{16}}
Expand \frac{10.25}{100} by multiplying both numerator and the denominator by 100.
\frac{1880466299910400000000000}{1430568690241985328321}+\frac{2500}{\left(1+\frac{41}{400}\right)^{12}}+\frac{2500}{\left(1+\frac{10.25}{100}\right)^{16}}
Reduce the fraction \frac{1025}{10000} to lowest terms by extracting and canceling out 25.
\frac{1880466299910400000000000}{1430568690241985328321}+\frac{2500}{\left(\frac{441}{400}\right)^{12}}+\frac{2500}{\left(1+\frac{10.25}{100}\right)^{16}}
Add 1 and \frac{41}{400} to get \frac{441}{400}.
\frac{1880466299910400000000000}{1430568690241985328321}+\frac{2500}{\frac{54108198377272584130510593262881}{16777216000000000000000000000000}}+\frac{2500}{\left(1+\frac{10.25}{100}\right)^{16}}
Calculate \frac{441}{400} to the power of 12 and get \frac{54108198377272584130510593262881}{16777216000000000000000000000000}.
\frac{1880466299910400000000000}{1430568690241985328321}+2500\times \frac{16777216000000000000000000000000}{54108198377272584130510593262881}+\frac{2500}{\left(1+\frac{10.25}{100}\right)^{16}}
Divide 2500 by \frac{54108198377272584130510593262881}{16777216000000000000000000000000} by multiplying 2500 by the reciprocal of \frac{54108198377272584130510593262881}{16777216000000000000000000000000}.
\frac{1880466299910400000000000}{1430568690241985328321}+\frac{41943040000000000000000000000000000}{54108198377272584130510593262881}+\frac{2500}{\left(1+\frac{10.25}{100}\right)^{16}}
Multiply 2500 and \frac{16777216000000000000000000000000}{54108198377272584130510593262881} to get \frac{41943040000000000000000000000000000}{54108198377272584130510593262881}.
\frac{113067652394611106101254400000000000}{54108198377272584130510593262881}+\frac{2500}{\left(1+\frac{10.25}{100}\right)^{16}}
Add \frac{1880466299910400000000000}{1430568690241985328321} and \frac{41943040000000000000000000000000000}{54108198377272584130510593262881} to get \frac{113067652394611106101254400000000000}{54108198377272584130510593262881}.
\frac{113067652394611106101254400000000000}{54108198377272584130510593262881}+\frac{2500}{\left(1+\frac{1025}{10000}\right)^{16}}
Expand \frac{10.25}{100} by multiplying both numerator and the denominator by 100.
\frac{113067652394611106101254400000000000}{54108198377272584130510593262881}+\frac{2500}{\left(1+\frac{41}{400}\right)^{16}}
Reduce the fraction \frac{1025}{10000} to lowest terms by extracting and canceling out 25.
\frac{113067652394611106101254400000000000}{54108198377272584130510593262881}+\frac{2500}{\left(\frac{441}{400}\right)^{16}}
Add 1 and \frac{41}{400} to get \frac{441}{400}.
\frac{113067652394611106101254400000000000}{54108198377272584130510593262881}+\frac{2500}{\frac{2046526777500669368329342638102622164679041}{429496729600000000000000000000000000000000}}
Calculate \frac{441}{400} to the power of 16 and get \frac{2046526777500669368329342638102622164679041}{429496729600000000000000000000000000000000}.
\frac{113067652394611106101254400000000000}{54108198377272584130510593262881}+2500\times \frac{429496729600000000000000000000000000000000}{2046526777500669368329342638102622164679041}
Divide 2500 by \frac{2046526777500669368329342638102622164679041}{429496729600000000000000000000000000000000} by multiplying 2500 by the reciprocal of \frac{2046526777500669368329342638102622164679041}{429496729600000000000000000000000000000000}.
\frac{113067652394611106101254400000000000}{54108198377272584130510593262881}+\frac{1073741824000000000000000000000000000000000000}{2046526777500669368329342638102622164679041}
Multiply 2500 and \frac{429496729600000000000000000000000000000000}{2046526777500669368329342638102622164679041} to get \frac{1073741824000000000000000000000000000000000000}{2046526777500669368329342638102622164679041}.
\frac{5350283738799810740356394196882438400000000000}{2046526777500669368329342638102622164679041}
Add \frac{113067652394611106101254400000000000}{54108198377272584130510593262881} and \frac{1073741824000000000000000000000000000000000000}{2046526777500669368329342638102622164679041} to get \frac{5350283738799810740356394196882438400000000000}{2046526777500669368329342638102622164679041}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}