Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\frac{25^{1}x^{1}y^{2}}{125^{1}x^{5}y^{7}}
Use the rules of exponents to simplify the expression.
\frac{25^{1}}{125^{1}}x^{1-5}y^{2-7}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{25^{1}}{125^{1}}x^{-4}y^{2-7}
Subtract 5 from 1.
\frac{25^{1}}{125^{1}}\times \frac{1}{x^{4}}y^{-5}
Subtract 7 from 2.
\frac{1}{5}\times \frac{1}{x^{4}}\times \frac{1}{y^{5}}
Reduce the fraction \frac{25}{125} to lowest terms by extracting and canceling out 25.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{25y^{2}}{125y^{7}}x^{1-5})
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{5y^{5}}x^{-4})
Do the arithmetic.
-4\times \frac{1}{5y^{5}}x^{-4-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
\left(-\frac{4}{5y^{5}}\right)x^{-5}
Do the arithmetic.