Evaluate
-\frac{5xy}{3}
Differentiate w.r.t. x
-\frac{5y}{3}
Share
Copied to clipboard
\frac{25^{1}x^{3}y^{2}}{\left(-15\right)^{1}x^{2}y^{1}}
Use the rules of exponents to simplify the expression.
\frac{25^{1}}{\left(-15\right)^{1}}x^{3-2}y^{2-1}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{25^{1}}{\left(-15\right)^{1}}x^{1}y^{2-1}
Subtract 2 from 3.
\frac{25^{1}}{\left(-15\right)^{1}}xy^{1}
Subtract 1 from 2.
-\frac{5}{3}xy
Reduce the fraction \frac{25}{-15} to lowest terms by extracting and canceling out 5.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{25y^{2}}{-15y}x^{3-2})
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\mathrm{d}}{\mathrm{d}x}(\left(-\frac{5y}{3}\right)x^{1})
Do the arithmetic.
\left(-\frac{5y}{3}\right)x^{1-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
\left(-\frac{5y}{3}\right)x^{0}
Do the arithmetic.
\left(-\frac{5y}{3}\right)\times 1
For any term t except 0, t^{0}=1.
-\frac{5y}{3}
For any term t, t\times 1=t and 1t=t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}