Solve for x
x\leq -\frac{55}{57}
Graph
Share
Copied to clipboard
2\left(25x+3\right)+7\left(x-1\right)\leq -56
Multiply both sides of the equation by 14, the least common multiple of 7,2. Since 14 is positive, the inequality direction remains the same.
50x+6+7\left(x-1\right)\leq -56
Use the distributive property to multiply 2 by 25x+3.
50x+6+7x-7\leq -56
Use the distributive property to multiply 7 by x-1.
57x+6-7\leq -56
Combine 50x and 7x to get 57x.
57x-1\leq -56
Subtract 7 from 6 to get -1.
57x\leq -56+1
Add 1 to both sides.
57x\leq -55
Add -56 and 1 to get -55.
x\leq -\frac{55}{57}
Divide both sides by 57. Since 57 is positive, the inequality direction remains the same.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}