Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Share

\frac{\frac{\left(25s^{2}+10st+t^{2}\right)\left(2s^{2}-9st+4t^{2}\right)}{\left(4s^{2}-15st-4t^{2}\right)\left(t^{2}+4st-5s^{2}\right)}}{\frac{10s^{2}-3st-t^{2}}{4s^{2}+5st+t^{2}}}
Multiply \frac{25s^{2}+10st+t^{2}}{4s^{2}-15st-4t^{2}} times \frac{2s^{2}-9st+4t^{2}}{t^{2}+4st-5s^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(25s^{2}+10st+t^{2}\right)\left(2s^{2}-9st+4t^{2}\right)\left(4s^{2}+5st+t^{2}\right)}{\left(4s^{2}-15st-4t^{2}\right)\left(t^{2}+4st-5s^{2}\right)\left(10s^{2}-3st-t^{2}\right)}
Divide \frac{\left(25s^{2}+10st+t^{2}\right)\left(2s^{2}-9st+4t^{2}\right)}{\left(4s^{2}-15st-4t^{2}\right)\left(t^{2}+4st-5s^{2}\right)} by \frac{10s^{2}-3st-t^{2}}{4s^{2}+5st+t^{2}} by multiplying \frac{\left(25s^{2}+10st+t^{2}\right)\left(2s^{2}-9st+4t^{2}\right)}{\left(4s^{2}-15st-4t^{2}\right)\left(t^{2}+4st-5s^{2}\right)} by the reciprocal of \frac{10s^{2}-3st-t^{2}}{4s^{2}+5st+t^{2}}.
\frac{\left(s+t\right)\left(s-4t\right)\left(4s+t\right)\left(2s-t\right)\left(5s+t\right)^{2}}{\left(s-4t\right)\left(-s+t\right)\left(4s+t\right)\left(2s-t\right)\left(5s+t\right)^{2}}
Factor the expressions that are not already factored.
\frac{s+t}{-s+t}
Cancel out \left(s-4t\right)\left(4s+t\right)\left(2s-t\right)\left(5s+t\right)^{2} in both numerator and denominator.
\frac{\frac{\left(25s^{2}+10st+t^{2}\right)\left(2s^{2}-9st+4t^{2}\right)}{\left(4s^{2}-15st-4t^{2}\right)\left(t^{2}+4st-5s^{2}\right)}}{\frac{10s^{2}-3st-t^{2}}{4s^{2}+5st+t^{2}}}
Multiply \frac{25s^{2}+10st+t^{2}}{4s^{2}-15st-4t^{2}} times \frac{2s^{2}-9st+4t^{2}}{t^{2}+4st-5s^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(25s^{2}+10st+t^{2}\right)\left(2s^{2}-9st+4t^{2}\right)\left(4s^{2}+5st+t^{2}\right)}{\left(4s^{2}-15st-4t^{2}\right)\left(t^{2}+4st-5s^{2}\right)\left(10s^{2}-3st-t^{2}\right)}
Divide \frac{\left(25s^{2}+10st+t^{2}\right)\left(2s^{2}-9st+4t^{2}\right)}{\left(4s^{2}-15st-4t^{2}\right)\left(t^{2}+4st-5s^{2}\right)} by \frac{10s^{2}-3st-t^{2}}{4s^{2}+5st+t^{2}} by multiplying \frac{\left(25s^{2}+10st+t^{2}\right)\left(2s^{2}-9st+4t^{2}\right)}{\left(4s^{2}-15st-4t^{2}\right)\left(t^{2}+4st-5s^{2}\right)} by the reciprocal of \frac{10s^{2}-3st-t^{2}}{4s^{2}+5st+t^{2}}.
\frac{\left(s+t\right)\left(s-4t\right)\left(4s+t\right)\left(2s-t\right)\left(5s+t\right)^{2}}{\left(s-4t\right)\left(-s+t\right)\left(4s+t\right)\left(2s-t\right)\left(5s+t\right)^{2}}
Factor the expressions that are not already factored.
\frac{s+t}{-s+t}
Cancel out \left(s-4t\right)\left(4s+t\right)\left(2s-t\right)\left(5s+t\right)^{2} in both numerator and denominator.