Evaluate
\frac{s+t}{t-s}
Expand
\frac{s+t}{t-s}
Share
Copied to clipboard
\frac{\frac{\left(25s^{2}+10st+t^{2}\right)\left(2s^{2}-9st+4t^{2}\right)}{\left(4s^{2}-15st-4t^{2}\right)\left(t^{2}+4st-5s^{2}\right)}}{\frac{10s^{2}-3st-t^{2}}{4s^{2}+5st+t^{2}}}
Multiply \frac{25s^{2}+10st+t^{2}}{4s^{2}-15st-4t^{2}} times \frac{2s^{2}-9st+4t^{2}}{t^{2}+4st-5s^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(25s^{2}+10st+t^{2}\right)\left(2s^{2}-9st+4t^{2}\right)\left(4s^{2}+5st+t^{2}\right)}{\left(4s^{2}-15st-4t^{2}\right)\left(t^{2}+4st-5s^{2}\right)\left(10s^{2}-3st-t^{2}\right)}
Divide \frac{\left(25s^{2}+10st+t^{2}\right)\left(2s^{2}-9st+4t^{2}\right)}{\left(4s^{2}-15st-4t^{2}\right)\left(t^{2}+4st-5s^{2}\right)} by \frac{10s^{2}-3st-t^{2}}{4s^{2}+5st+t^{2}} by multiplying \frac{\left(25s^{2}+10st+t^{2}\right)\left(2s^{2}-9st+4t^{2}\right)}{\left(4s^{2}-15st-4t^{2}\right)\left(t^{2}+4st-5s^{2}\right)} by the reciprocal of \frac{10s^{2}-3st-t^{2}}{4s^{2}+5st+t^{2}}.
\frac{\left(s+t\right)\left(s-4t\right)\left(4s+t\right)\left(2s-t\right)\left(5s+t\right)^{2}}{\left(s-4t\right)\left(-s+t\right)\left(4s+t\right)\left(2s-t\right)\left(5s+t\right)^{2}}
Factor the expressions that are not already factored.
\frac{s+t}{-s+t}
Cancel out \left(s-4t\right)\left(4s+t\right)\left(2s-t\right)\left(5s+t\right)^{2} in both numerator and denominator.
\frac{\frac{\left(25s^{2}+10st+t^{2}\right)\left(2s^{2}-9st+4t^{2}\right)}{\left(4s^{2}-15st-4t^{2}\right)\left(t^{2}+4st-5s^{2}\right)}}{\frac{10s^{2}-3st-t^{2}}{4s^{2}+5st+t^{2}}}
Multiply \frac{25s^{2}+10st+t^{2}}{4s^{2}-15st-4t^{2}} times \frac{2s^{2}-9st+4t^{2}}{t^{2}+4st-5s^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(25s^{2}+10st+t^{2}\right)\left(2s^{2}-9st+4t^{2}\right)\left(4s^{2}+5st+t^{2}\right)}{\left(4s^{2}-15st-4t^{2}\right)\left(t^{2}+4st-5s^{2}\right)\left(10s^{2}-3st-t^{2}\right)}
Divide \frac{\left(25s^{2}+10st+t^{2}\right)\left(2s^{2}-9st+4t^{2}\right)}{\left(4s^{2}-15st-4t^{2}\right)\left(t^{2}+4st-5s^{2}\right)} by \frac{10s^{2}-3st-t^{2}}{4s^{2}+5st+t^{2}} by multiplying \frac{\left(25s^{2}+10st+t^{2}\right)\left(2s^{2}-9st+4t^{2}\right)}{\left(4s^{2}-15st-4t^{2}\right)\left(t^{2}+4st-5s^{2}\right)} by the reciprocal of \frac{10s^{2}-3st-t^{2}}{4s^{2}+5st+t^{2}}.
\frac{\left(s+t\right)\left(s-4t\right)\left(4s+t\right)\left(2s-t\right)\left(5s+t\right)^{2}}{\left(s-4t\right)\left(-s+t\right)\left(4s+t\right)\left(2s-t\right)\left(5s+t\right)^{2}}
Factor the expressions that are not already factored.
\frac{s+t}{-s+t}
Cancel out \left(s-4t\right)\left(4s+t\right)\left(2s-t\right)\left(5s+t\right)^{2} in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}