Solve for x (complex solution)
x=\frac{12+3\sqrt{137}i}{17}\approx 0.705882353+2.065535278i
x=\frac{-3\sqrt{137}i+12}{17}\approx 0.705882353-2.065535278i
Graph
Share
Copied to clipboard
\frac{25}{9}x^{2}-\frac{14}{3}x+25=-x^{2}+\frac{2}{3}x+3+4
Combine 2x and -\frac{4}{3}x to get \frac{2}{3}x.
\frac{25}{9}x^{2}-\frac{14}{3}x+25=-x^{2}+\frac{2}{3}x+7
Add 3 and 4 to get 7.
\frac{25}{9}x^{2}-\frac{14}{3}x+25+x^{2}=\frac{2}{3}x+7
Add x^{2} to both sides.
\frac{34}{9}x^{2}-\frac{14}{3}x+25=\frac{2}{3}x+7
Combine \frac{25}{9}x^{2} and x^{2} to get \frac{34}{9}x^{2}.
\frac{34}{9}x^{2}-\frac{14}{3}x+25-\frac{2}{3}x=7
Subtract \frac{2}{3}x from both sides.
\frac{34}{9}x^{2}-\frac{16}{3}x+25=7
Combine -\frac{14}{3}x and -\frac{2}{3}x to get -\frac{16}{3}x.
\frac{34}{9}x^{2}-\frac{16}{3}x+25-7=0
Subtract 7 from both sides.
\frac{34}{9}x^{2}-\frac{16}{3}x+18=0
Subtract 7 from 25 to get 18.
x=\frac{-\left(-\frac{16}{3}\right)±\sqrt{\left(-\frac{16}{3}\right)^{2}-4\times \frac{34}{9}\times 18}}{2\times \frac{34}{9}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{34}{9} for a, -\frac{16}{3} for b, and 18 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{16}{3}\right)±\sqrt{\frac{256}{9}-4\times \frac{34}{9}\times 18}}{2\times \frac{34}{9}}
Square -\frac{16}{3} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-\frac{16}{3}\right)±\sqrt{\frac{256}{9}-\frac{136}{9}\times 18}}{2\times \frac{34}{9}}
Multiply -4 times \frac{34}{9}.
x=\frac{-\left(-\frac{16}{3}\right)±\sqrt{\frac{256}{9}-272}}{2\times \frac{34}{9}}
Multiply -\frac{136}{9} times 18.
x=\frac{-\left(-\frac{16}{3}\right)±\sqrt{-\frac{2192}{9}}}{2\times \frac{34}{9}}
Add \frac{256}{9} to -272.
x=\frac{-\left(-\frac{16}{3}\right)±\frac{4\sqrt{137}i}{3}}{2\times \frac{34}{9}}
Take the square root of -\frac{2192}{9}.
x=\frac{\frac{16}{3}±\frac{4\sqrt{137}i}{3}}{2\times \frac{34}{9}}
The opposite of -\frac{16}{3} is \frac{16}{3}.
x=\frac{\frac{16}{3}±\frac{4\sqrt{137}i}{3}}{\frac{68}{9}}
Multiply 2 times \frac{34}{9}.
x=\frac{16+4\sqrt{137}i}{3\times \frac{68}{9}}
Now solve the equation x=\frac{\frac{16}{3}±\frac{4\sqrt{137}i}{3}}{\frac{68}{9}} when ± is plus. Add \frac{16}{3} to \frac{4i\sqrt{137}}{3}.
x=\frac{12+3\sqrt{137}i}{17}
Divide \frac{16+4i\sqrt{137}}{3} by \frac{68}{9} by multiplying \frac{16+4i\sqrt{137}}{3} by the reciprocal of \frac{68}{9}.
x=\frac{-4\sqrt{137}i+16}{3\times \frac{68}{9}}
Now solve the equation x=\frac{\frac{16}{3}±\frac{4\sqrt{137}i}{3}}{\frac{68}{9}} when ± is minus. Subtract \frac{4i\sqrt{137}}{3} from \frac{16}{3}.
x=\frac{-3\sqrt{137}i+12}{17}
Divide \frac{16-4i\sqrt{137}}{3} by \frac{68}{9} by multiplying \frac{16-4i\sqrt{137}}{3} by the reciprocal of \frac{68}{9}.
x=\frac{12+3\sqrt{137}i}{17} x=\frac{-3\sqrt{137}i+12}{17}
The equation is now solved.
\frac{25}{9}x^{2}-\frac{14}{3}x+25=-x^{2}+\frac{2}{3}x+3+4
Combine 2x and -\frac{4}{3}x to get \frac{2}{3}x.
\frac{25}{9}x^{2}-\frac{14}{3}x+25=-x^{2}+\frac{2}{3}x+7
Add 3 and 4 to get 7.
\frac{25}{9}x^{2}-\frac{14}{3}x+25+x^{2}=\frac{2}{3}x+7
Add x^{2} to both sides.
\frac{34}{9}x^{2}-\frac{14}{3}x+25=\frac{2}{3}x+7
Combine \frac{25}{9}x^{2} and x^{2} to get \frac{34}{9}x^{2}.
\frac{34}{9}x^{2}-\frac{14}{3}x+25-\frac{2}{3}x=7
Subtract \frac{2}{3}x from both sides.
\frac{34}{9}x^{2}-\frac{16}{3}x+25=7
Combine -\frac{14}{3}x and -\frac{2}{3}x to get -\frac{16}{3}x.
\frac{34}{9}x^{2}-\frac{16}{3}x=7-25
Subtract 25 from both sides.
\frac{34}{9}x^{2}-\frac{16}{3}x=-18
Subtract 25 from 7 to get -18.
\frac{\frac{34}{9}x^{2}-\frac{16}{3}x}{\frac{34}{9}}=-\frac{18}{\frac{34}{9}}
Divide both sides of the equation by \frac{34}{9}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\left(-\frac{\frac{16}{3}}{\frac{34}{9}}\right)x=-\frac{18}{\frac{34}{9}}
Dividing by \frac{34}{9} undoes the multiplication by \frac{34}{9}.
x^{2}-\frac{24}{17}x=-\frac{18}{\frac{34}{9}}
Divide -\frac{16}{3} by \frac{34}{9} by multiplying -\frac{16}{3} by the reciprocal of \frac{34}{9}.
x^{2}-\frac{24}{17}x=-\frac{81}{17}
Divide -18 by \frac{34}{9} by multiplying -18 by the reciprocal of \frac{34}{9}.
x^{2}-\frac{24}{17}x+\left(-\frac{12}{17}\right)^{2}=-\frac{81}{17}+\left(-\frac{12}{17}\right)^{2}
Divide -\frac{24}{17}, the coefficient of the x term, by 2 to get -\frac{12}{17}. Then add the square of -\frac{12}{17} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{24}{17}x+\frac{144}{289}=-\frac{81}{17}+\frac{144}{289}
Square -\frac{12}{17} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{24}{17}x+\frac{144}{289}=-\frac{1233}{289}
Add -\frac{81}{17} to \frac{144}{289} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{12}{17}\right)^{2}=-\frac{1233}{289}
Factor x^{2}-\frac{24}{17}x+\frac{144}{289}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{12}{17}\right)^{2}}=\sqrt{-\frac{1233}{289}}
Take the square root of both sides of the equation.
x-\frac{12}{17}=\frac{3\sqrt{137}i}{17} x-\frac{12}{17}=-\frac{3\sqrt{137}i}{17}
Simplify.
x=\frac{12+3\sqrt{137}i}{17} x=\frac{-3\sqrt{137}i+12}{17}
Add \frac{12}{17} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}