Solve for g
g=\frac{2}{25m}
m\neq 0
Solve for m
m=\frac{2}{25g}
g\neq 0
Quiz
Linear Equation
5 problems similar to:
\frac { 25 } { 4 } \quad ( g ) 7 m + \frac { 19 } { 2 } = 13
Share
Copied to clipboard
\frac{175}{4}gm+\frac{19}{2}=13
Multiply \frac{25}{4} and 7 to get \frac{175}{4}.
\frac{175}{4}gm=13-\frac{19}{2}
Subtract \frac{19}{2} from both sides.
\frac{175}{4}gm=\frac{7}{2}
Subtract \frac{19}{2} from 13 to get \frac{7}{2}.
\frac{175m}{4}g=\frac{7}{2}
The equation is in standard form.
\frac{4\times \frac{175m}{4}g}{175m}=\frac{\frac{7}{2}\times 4}{175m}
Divide both sides by \frac{175}{4}m.
g=\frac{\frac{7}{2}\times 4}{175m}
Dividing by \frac{175}{4}m undoes the multiplication by \frac{175}{4}m.
g=\frac{2}{25m}
Divide \frac{7}{2} by \frac{175}{4}m.
\frac{175}{4}gm+\frac{19}{2}=13
Multiply \frac{25}{4} and 7 to get \frac{175}{4}.
\frac{175}{4}gm=13-\frac{19}{2}
Subtract \frac{19}{2} from both sides.
\frac{175}{4}gm=\frac{7}{2}
Subtract \frac{19}{2} from 13 to get \frac{7}{2}.
\frac{175g}{4}m=\frac{7}{2}
The equation is in standard form.
\frac{4\times \frac{175g}{4}m}{175g}=\frac{\frac{7}{2}\times 4}{175g}
Divide both sides by \frac{175}{4}g.
m=\frac{\frac{7}{2}\times 4}{175g}
Dividing by \frac{175}{4}g undoes the multiplication by \frac{175}{4}g.
m=\frac{2}{25g}
Divide \frac{7}{2} by \frac{175}{4}g.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}