Skip to main content
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

a^{2}=64\times \frac{16}{25}
Multiply both sides by \frac{16}{25}, the reciprocal of \frac{25}{16}.
a^{2}=\frac{1024}{25}
Multiply 64 and \frac{16}{25} to get \frac{1024}{25}.
a^{2}-\frac{1024}{25}=0
Subtract \frac{1024}{25} from both sides.
25a^{2}-1024=0
Multiply both sides by 25.
\left(5a-32\right)\left(5a+32\right)=0
Consider 25a^{2}-1024. Rewrite 25a^{2}-1024 as \left(5a\right)^{2}-32^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
a=\frac{32}{5} a=-\frac{32}{5}
To find equation solutions, solve 5a-32=0 and 5a+32=0.
a^{2}=64\times \frac{16}{25}
Multiply both sides by \frac{16}{25}, the reciprocal of \frac{25}{16}.
a^{2}=\frac{1024}{25}
Multiply 64 and \frac{16}{25} to get \frac{1024}{25}.
a=\frac{32}{5} a=-\frac{32}{5}
Take the square root of both sides of the equation.
a^{2}=64\times \frac{16}{25}
Multiply both sides by \frac{16}{25}, the reciprocal of \frac{25}{16}.
a^{2}=\frac{1024}{25}
Multiply 64 and \frac{16}{25} to get \frac{1024}{25}.
a^{2}-\frac{1024}{25}=0
Subtract \frac{1024}{25} from both sides.
a=\frac{0±\sqrt{0^{2}-4\left(-\frac{1024}{25}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -\frac{1024}{25} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{0±\sqrt{-4\left(-\frac{1024}{25}\right)}}{2}
Square 0.
a=\frac{0±\sqrt{\frac{4096}{25}}}{2}
Multiply -4 times -\frac{1024}{25}.
a=\frac{0±\frac{64}{5}}{2}
Take the square root of \frac{4096}{25}.
a=\frac{32}{5}
Now solve the equation a=\frac{0±\frac{64}{5}}{2} when ± is plus.
a=-\frac{32}{5}
Now solve the equation a=\frac{0±\frac{64}{5}}{2} when ± is minus.
a=\frac{32}{5} a=-\frac{32}{5}
The equation is now solved.