Evaluate
\frac{287a}{57}
Expand
\frac{287a}{57}
Share
Copied to clipboard
\frac{25+\frac{1}{36}-\frac{10}{9}}{5-\frac{1}{4}}a
Calculate 6 to the power of 2 and get 36.
\frac{\frac{900}{36}+\frac{1}{36}-\frac{10}{9}}{5-\frac{1}{4}}a
Convert 25 to fraction \frac{900}{36}.
\frac{\frac{900+1}{36}-\frac{10}{9}}{5-\frac{1}{4}}a
Since \frac{900}{36} and \frac{1}{36} have the same denominator, add them by adding their numerators.
\frac{\frac{901}{36}-\frac{10}{9}}{5-\frac{1}{4}}a
Add 900 and 1 to get 901.
\frac{\frac{901}{36}-\frac{40}{36}}{5-\frac{1}{4}}a
Least common multiple of 36 and 9 is 36. Convert \frac{901}{36} and \frac{10}{9} to fractions with denominator 36.
\frac{\frac{901-40}{36}}{5-\frac{1}{4}}a
Since \frac{901}{36} and \frac{40}{36} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{861}{36}}{5-\frac{1}{4}}a
Subtract 40 from 901 to get 861.
\frac{\frac{287}{12}}{5-\frac{1}{4}}a
Reduce the fraction \frac{861}{36} to lowest terms by extracting and canceling out 3.
\frac{\frac{287}{12}}{\frac{20}{4}-\frac{1}{4}}a
Convert 5 to fraction \frac{20}{4}.
\frac{\frac{287}{12}}{\frac{20-1}{4}}a
Since \frac{20}{4} and \frac{1}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{287}{12}}{\frac{19}{4}}a
Subtract 1 from 20 to get 19.
\frac{287}{12}\times \frac{4}{19}a
Divide \frac{287}{12} by \frac{19}{4} by multiplying \frac{287}{12} by the reciprocal of \frac{19}{4}.
\frac{287\times 4}{12\times 19}a
Multiply \frac{287}{12} times \frac{4}{19} by multiplying numerator times numerator and denominator times denominator.
\frac{1148}{228}a
Do the multiplications in the fraction \frac{287\times 4}{12\times 19}.
\frac{287}{57}a
Reduce the fraction \frac{1148}{228} to lowest terms by extracting and canceling out 4.
\frac{25+\frac{1}{36}-\frac{10}{9}}{5-\frac{1}{4}}a
Calculate 6 to the power of 2 and get 36.
\frac{\frac{900}{36}+\frac{1}{36}-\frac{10}{9}}{5-\frac{1}{4}}a
Convert 25 to fraction \frac{900}{36}.
\frac{\frac{900+1}{36}-\frac{10}{9}}{5-\frac{1}{4}}a
Since \frac{900}{36} and \frac{1}{36} have the same denominator, add them by adding their numerators.
\frac{\frac{901}{36}-\frac{10}{9}}{5-\frac{1}{4}}a
Add 900 and 1 to get 901.
\frac{\frac{901}{36}-\frac{40}{36}}{5-\frac{1}{4}}a
Least common multiple of 36 and 9 is 36. Convert \frac{901}{36} and \frac{10}{9} to fractions with denominator 36.
\frac{\frac{901-40}{36}}{5-\frac{1}{4}}a
Since \frac{901}{36} and \frac{40}{36} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{861}{36}}{5-\frac{1}{4}}a
Subtract 40 from 901 to get 861.
\frac{\frac{287}{12}}{5-\frac{1}{4}}a
Reduce the fraction \frac{861}{36} to lowest terms by extracting and canceling out 3.
\frac{\frac{287}{12}}{\frac{20}{4}-\frac{1}{4}}a
Convert 5 to fraction \frac{20}{4}.
\frac{\frac{287}{12}}{\frac{20-1}{4}}a
Since \frac{20}{4} and \frac{1}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{287}{12}}{\frac{19}{4}}a
Subtract 1 from 20 to get 19.
\frac{287}{12}\times \frac{4}{19}a
Divide \frac{287}{12} by \frac{19}{4} by multiplying \frac{287}{12} by the reciprocal of \frac{19}{4}.
\frac{287\times 4}{12\times 19}a
Multiply \frac{287}{12} times \frac{4}{19} by multiplying numerator times numerator and denominator times denominator.
\frac{1148}{228}a
Do the multiplications in the fraction \frac{287\times 4}{12\times 19}.
\frac{287}{57}a
Reduce the fraction \frac{1148}{228} to lowest terms by extracting and canceling out 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}