Evaluate
\frac{49}{13}\approx 3.769230769
Factor
\frac{7 ^ {2}}{13} = 3\frac{10}{13} = 3.769230769230769
Share
Copied to clipboard
\begin{array}{l}\phantom{65)}\phantom{1}\\65\overline{)245}\\\end{array}
Use the 1^{st} digit 2 from dividend 245
\begin{array}{l}\phantom{65)}0\phantom{2}\\65\overline{)245}\\\end{array}
Since 2 is less than 65, use the next digit 4 from dividend 245 and add 0 to the quotient
\begin{array}{l}\phantom{65)}0\phantom{3}\\65\overline{)245}\\\end{array}
Use the 2^{nd} digit 4 from dividend 245
\begin{array}{l}\phantom{65)}00\phantom{4}\\65\overline{)245}\\\end{array}
Since 24 is less than 65, use the next digit 5 from dividend 245 and add 0 to the quotient
\begin{array}{l}\phantom{65)}00\phantom{5}\\65\overline{)245}\\\end{array}
Use the 3^{rd} digit 5 from dividend 245
\begin{array}{l}\phantom{65)}003\phantom{6}\\65\overline{)245}\\\phantom{65)}\underline{\phantom{}195\phantom{}}\\\phantom{65)9}50\\\end{array}
Find closest multiple of 65 to 245. We see that 3 \times 65 = 195 is the nearest. Now subtract 195 from 245 to get reminder 50. Add 3 to quotient.
\text{Quotient: }3 \text{Reminder: }50
Since 50 is less than 65, stop the division. The reminder is 50. The topmost line 003 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}