Evaluate
\frac{242}{27}\approx 8.962962963
Factor
\frac{2 \cdot 11 ^ {2}}{3 ^ {3}} = 8\frac{26}{27} = 8.962962962962964
Share
Copied to clipboard
\begin{array}{l}\phantom{27)}\phantom{1}\\27\overline{)242}\\\end{array}
Use the 1^{st} digit 2 from dividend 242
\begin{array}{l}\phantom{27)}0\phantom{2}\\27\overline{)242}\\\end{array}
Since 2 is less than 27, use the next digit 4 from dividend 242 and add 0 to the quotient
\begin{array}{l}\phantom{27)}0\phantom{3}\\27\overline{)242}\\\end{array}
Use the 2^{nd} digit 4 from dividend 242
\begin{array}{l}\phantom{27)}00\phantom{4}\\27\overline{)242}\\\end{array}
Since 24 is less than 27, use the next digit 2 from dividend 242 and add 0 to the quotient
\begin{array}{l}\phantom{27)}00\phantom{5}\\27\overline{)242}\\\end{array}
Use the 3^{rd} digit 2 from dividend 242
\begin{array}{l}\phantom{27)}008\phantom{6}\\27\overline{)242}\\\phantom{27)}\underline{\phantom{}216\phantom{}}\\\phantom{27)9}26\\\end{array}
Find closest multiple of 27 to 242. We see that 8 \times 27 = 216 is the nearest. Now subtract 216 from 242 to get reminder 26. Add 8 to quotient.
\text{Quotient: }8 \text{Reminder: }26
Since 26 is less than 27, stop the division. The reminder is 26. The topmost line 008 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}