Evaluate
\frac{241}{18}\approx 13.388888889
Factor
\frac{241}{2 \cdot 3 ^ {2}} = 13\frac{7}{18} = 13.38888888888889
Share
Copied to clipboard
\begin{array}{l}\phantom{18)}\phantom{1}\\18\overline{)241}\\\end{array}
Use the 1^{st} digit 2 from dividend 241
\begin{array}{l}\phantom{18)}0\phantom{2}\\18\overline{)241}\\\end{array}
Since 2 is less than 18, use the next digit 4 from dividend 241 and add 0 to the quotient
\begin{array}{l}\phantom{18)}0\phantom{3}\\18\overline{)241}\\\end{array}
Use the 2^{nd} digit 4 from dividend 241
\begin{array}{l}\phantom{18)}01\phantom{4}\\18\overline{)241}\\\phantom{18)}\underline{\phantom{}18\phantom{9}}\\\phantom{18)9}6\\\end{array}
Find closest multiple of 18 to 24. We see that 1 \times 18 = 18 is the nearest. Now subtract 18 from 24 to get reminder 6. Add 1 to quotient.
\begin{array}{l}\phantom{18)}01\phantom{5}\\18\overline{)241}\\\phantom{18)}\underline{\phantom{}18\phantom{9}}\\\phantom{18)9}61\\\end{array}
Use the 3^{rd} digit 1 from dividend 241
\begin{array}{l}\phantom{18)}013\phantom{6}\\18\overline{)241}\\\phantom{18)}\underline{\phantom{}18\phantom{9}}\\\phantom{18)9}61\\\phantom{18)}\underline{\phantom{9}54\phantom{}}\\\phantom{18)99}7\\\end{array}
Find closest multiple of 18 to 61. We see that 3 \times 18 = 54 is the nearest. Now subtract 54 from 61 to get reminder 7. Add 3 to quotient.
\text{Quotient: }13 \text{Reminder: }7
Since 7 is less than 18, stop the division. The reminder is 7. The topmost line 013 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 13.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}