Evaluate
\frac{241}{150}\approx 1.606666667
Factor
\frac{241}{2 \cdot 3 \cdot 5 ^ {2}} = 1\frac{91}{150} = 1.6066666666666667
Share
Copied to clipboard
\begin{array}{l}\phantom{150)}\phantom{1}\\150\overline{)241}\\\end{array}
Use the 1^{st} digit 2 from dividend 241
\begin{array}{l}\phantom{150)}0\phantom{2}\\150\overline{)241}\\\end{array}
Since 2 is less than 150, use the next digit 4 from dividend 241 and add 0 to the quotient
\begin{array}{l}\phantom{150)}0\phantom{3}\\150\overline{)241}\\\end{array}
Use the 2^{nd} digit 4 from dividend 241
\begin{array}{l}\phantom{150)}00\phantom{4}\\150\overline{)241}\\\end{array}
Since 24 is less than 150, use the next digit 1 from dividend 241 and add 0 to the quotient
\begin{array}{l}\phantom{150)}00\phantom{5}\\150\overline{)241}\\\end{array}
Use the 3^{rd} digit 1 from dividend 241
\begin{array}{l}\phantom{150)}001\phantom{6}\\150\overline{)241}\\\phantom{150)}\underline{\phantom{}150\phantom{}}\\\phantom{150)9}91\\\end{array}
Find closest multiple of 150 to 241. We see that 1 \times 150 = 150 is the nearest. Now subtract 150 from 241 to get reminder 91. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }91
Since 91 is less than 150, stop the division. The reminder is 91. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}