Evaluate
2101
Factor
11\times 191
Share
Copied to clipboard
\frac{2401\left(1-\left(-\frac{1}{16807}\right)\right)}{1+\frac{1}{7}}
Calculate -\frac{1}{7} to the power of 5 and get -\frac{1}{16807}.
\frac{2401\left(1+\frac{1}{16807}\right)}{1+\frac{1}{7}}
The opposite of -\frac{1}{16807} is \frac{1}{16807}.
\frac{2401\left(\frac{16807}{16807}+\frac{1}{16807}\right)}{1+\frac{1}{7}}
Convert 1 to fraction \frac{16807}{16807}.
\frac{2401\times \frac{16807+1}{16807}}{1+\frac{1}{7}}
Since \frac{16807}{16807} and \frac{1}{16807} have the same denominator, add them by adding their numerators.
\frac{2401\times \frac{16808}{16807}}{1+\frac{1}{7}}
Add 16807 and 1 to get 16808.
\frac{\frac{2401\times 16808}{16807}}{1+\frac{1}{7}}
Express 2401\times \frac{16808}{16807} as a single fraction.
\frac{\frac{40356008}{16807}}{1+\frac{1}{7}}
Multiply 2401 and 16808 to get 40356008.
\frac{\frac{16808}{7}}{1+\frac{1}{7}}
Reduce the fraction \frac{40356008}{16807} to lowest terms by extracting and canceling out 2401.
\frac{\frac{16808}{7}}{\frac{7}{7}+\frac{1}{7}}
Convert 1 to fraction \frac{7}{7}.
\frac{\frac{16808}{7}}{\frac{7+1}{7}}
Since \frac{7}{7} and \frac{1}{7} have the same denominator, add them by adding their numerators.
\frac{\frac{16808}{7}}{\frac{8}{7}}
Add 7 and 1 to get 8.
\frac{16808}{7}\times \frac{7}{8}
Divide \frac{16808}{7} by \frac{8}{7} by multiplying \frac{16808}{7} by the reciprocal of \frac{8}{7}.
\frac{16808\times 7}{7\times 8}
Multiply \frac{16808}{7} times \frac{7}{8} by multiplying numerator times numerator and denominator times denominator.
\frac{16808}{8}
Cancel out 7 in both numerator and denominator.
2101
Divide 16808 by 8 to get 2101.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}