Solve for x
x = \frac{5 \sqrt{248089} + 2215}{18} \approx 261.412592793
x=\frac{2215-5\sqrt{248089}}{18}\approx -15.301481682
Graph
Share
Copied to clipboard
\left(x+15\right)\times 2400-x\times 50=9x\left(x+15\right)
Variable x cannot be equal to any of the values -15,0 since division by zero is not defined. Multiply both sides of the equation by x\left(x+15\right), the least common multiple of x,x+15.
2400x+36000-x\times 50=9x\left(x+15\right)
Use the distributive property to multiply x+15 by 2400.
2400x+36000-x\times 50=9x^{2}+135x
Use the distributive property to multiply 9x by x+15.
2400x+36000-x\times 50-9x^{2}=135x
Subtract 9x^{2} from both sides.
2400x+36000-x\times 50-9x^{2}-135x=0
Subtract 135x from both sides.
2265x+36000-x\times 50-9x^{2}=0
Combine 2400x and -135x to get 2265x.
2265x+36000-50x-9x^{2}=0
Multiply -1 and 50 to get -50.
2215x+36000-9x^{2}=0
Combine 2265x and -50x to get 2215x.
-9x^{2}+2215x+36000=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-2215±\sqrt{2215^{2}-4\left(-9\right)\times 36000}}{2\left(-9\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -9 for a, 2215 for b, and 36000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2215±\sqrt{4906225-4\left(-9\right)\times 36000}}{2\left(-9\right)}
Square 2215.
x=\frac{-2215±\sqrt{4906225+36\times 36000}}{2\left(-9\right)}
Multiply -4 times -9.
x=\frac{-2215±\sqrt{4906225+1296000}}{2\left(-9\right)}
Multiply 36 times 36000.
x=\frac{-2215±\sqrt{6202225}}{2\left(-9\right)}
Add 4906225 to 1296000.
x=\frac{-2215±5\sqrt{248089}}{2\left(-9\right)}
Take the square root of 6202225.
x=\frac{-2215±5\sqrt{248089}}{-18}
Multiply 2 times -9.
x=\frac{5\sqrt{248089}-2215}{-18}
Now solve the equation x=\frac{-2215±5\sqrt{248089}}{-18} when ± is plus. Add -2215 to 5\sqrt{248089}.
x=\frac{2215-5\sqrt{248089}}{18}
Divide -2215+5\sqrt{248089} by -18.
x=\frac{-5\sqrt{248089}-2215}{-18}
Now solve the equation x=\frac{-2215±5\sqrt{248089}}{-18} when ± is minus. Subtract 5\sqrt{248089} from -2215.
x=\frac{5\sqrt{248089}+2215}{18}
Divide -2215-5\sqrt{248089} by -18.
x=\frac{2215-5\sqrt{248089}}{18} x=\frac{5\sqrt{248089}+2215}{18}
The equation is now solved.
\left(x+15\right)\times 2400-x\times 50=9x\left(x+15\right)
Variable x cannot be equal to any of the values -15,0 since division by zero is not defined. Multiply both sides of the equation by x\left(x+15\right), the least common multiple of x,x+15.
2400x+36000-x\times 50=9x\left(x+15\right)
Use the distributive property to multiply x+15 by 2400.
2400x+36000-x\times 50=9x^{2}+135x
Use the distributive property to multiply 9x by x+15.
2400x+36000-x\times 50-9x^{2}=135x
Subtract 9x^{2} from both sides.
2400x+36000-x\times 50-9x^{2}-135x=0
Subtract 135x from both sides.
2265x+36000-x\times 50-9x^{2}=0
Combine 2400x and -135x to get 2265x.
2265x-x\times 50-9x^{2}=-36000
Subtract 36000 from both sides. Anything subtracted from zero gives its negation.
2265x-50x-9x^{2}=-36000
Multiply -1 and 50 to get -50.
2215x-9x^{2}=-36000
Combine 2265x and -50x to get 2215x.
-9x^{2}+2215x=-36000
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-9x^{2}+2215x}{-9}=-\frac{36000}{-9}
Divide both sides by -9.
x^{2}+\frac{2215}{-9}x=-\frac{36000}{-9}
Dividing by -9 undoes the multiplication by -9.
x^{2}-\frac{2215}{9}x=-\frac{36000}{-9}
Divide 2215 by -9.
x^{2}-\frac{2215}{9}x=4000
Divide -36000 by -9.
x^{2}-\frac{2215}{9}x+\left(-\frac{2215}{18}\right)^{2}=4000+\left(-\frac{2215}{18}\right)^{2}
Divide -\frac{2215}{9}, the coefficient of the x term, by 2 to get -\frac{2215}{18}. Then add the square of -\frac{2215}{18} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{2215}{9}x+\frac{4906225}{324}=4000+\frac{4906225}{324}
Square -\frac{2215}{18} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{2215}{9}x+\frac{4906225}{324}=\frac{6202225}{324}
Add 4000 to \frac{4906225}{324}.
\left(x-\frac{2215}{18}\right)^{2}=\frac{6202225}{324}
Factor x^{2}-\frac{2215}{9}x+\frac{4906225}{324}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{2215}{18}\right)^{2}}=\sqrt{\frac{6202225}{324}}
Take the square root of both sides of the equation.
x-\frac{2215}{18}=\frac{5\sqrt{248089}}{18} x-\frac{2215}{18}=-\frac{5\sqrt{248089}}{18}
Simplify.
x=\frac{5\sqrt{248089}+2215}{18} x=\frac{2215-5\sqrt{248089}}{18}
Add \frac{2215}{18} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}