Evaluate
\frac{20}{3}\approx 6.666666667
Factor
\frac{2 ^ {2} \cdot 5}{3} = 6\frac{2}{3} = 6.666666666666667
Share
Copied to clipboard
\begin{array}{l}\phantom{36)}\phantom{1}\\36\overline{)240}\\\end{array}
Use the 1^{st} digit 2 from dividend 240
\begin{array}{l}\phantom{36)}0\phantom{2}\\36\overline{)240}\\\end{array}
Since 2 is less than 36, use the next digit 4 from dividend 240 and add 0 to the quotient
\begin{array}{l}\phantom{36)}0\phantom{3}\\36\overline{)240}\\\end{array}
Use the 2^{nd} digit 4 from dividend 240
\begin{array}{l}\phantom{36)}00\phantom{4}\\36\overline{)240}\\\end{array}
Since 24 is less than 36, use the next digit 0 from dividend 240 and add 0 to the quotient
\begin{array}{l}\phantom{36)}00\phantom{5}\\36\overline{)240}\\\end{array}
Use the 3^{rd} digit 0 from dividend 240
\begin{array}{l}\phantom{36)}006\phantom{6}\\36\overline{)240}\\\phantom{36)}\underline{\phantom{}216\phantom{}}\\\phantom{36)9}24\\\end{array}
Find closest multiple of 36 to 240. We see that 6 \times 36 = 216 is the nearest. Now subtract 216 from 240 to get reminder 24. Add 6 to quotient.
\text{Quotient: }6 \text{Reminder: }24
Since 24 is less than 36, stop the division. The reminder is 24. The topmost line 006 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}