Evaluate
\frac{3}{2}=1.5
Factor
\frac{3}{2} = 1\frac{1}{2} = 1.5
Share
Copied to clipboard
\begin{array}{l}\phantom{160)}\phantom{1}\\160\overline{)240}\\\end{array}
Use the 1^{st} digit 2 from dividend 240
\begin{array}{l}\phantom{160)}0\phantom{2}\\160\overline{)240}\\\end{array}
Since 2 is less than 160, use the next digit 4 from dividend 240 and add 0 to the quotient
\begin{array}{l}\phantom{160)}0\phantom{3}\\160\overline{)240}\\\end{array}
Use the 2^{nd} digit 4 from dividend 240
\begin{array}{l}\phantom{160)}00\phantom{4}\\160\overline{)240}\\\end{array}
Since 24 is less than 160, use the next digit 0 from dividend 240 and add 0 to the quotient
\begin{array}{l}\phantom{160)}00\phantom{5}\\160\overline{)240}\\\end{array}
Use the 3^{rd} digit 0 from dividend 240
\begin{array}{l}\phantom{160)}001\phantom{6}\\160\overline{)240}\\\phantom{160)}\underline{\phantom{}160\phantom{}}\\\phantom{160)9}80\\\end{array}
Find closest multiple of 160 to 240. We see that 1 \times 160 = 160 is the nearest. Now subtract 160 from 240 to get reminder 80. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }80
Since 80 is less than 160, stop the division. The reminder is 80. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}