Evaluate
15
Factor
3\times 5
Share
Copied to clipboard
\begin{array}{l}\phantom{16)}\phantom{1}\\16\overline{)240}\\\end{array}
Use the 1^{st} digit 2 from dividend 240
\begin{array}{l}\phantom{16)}0\phantom{2}\\16\overline{)240}\\\end{array}
Since 2 is less than 16, use the next digit 4 from dividend 240 and add 0 to the quotient
\begin{array}{l}\phantom{16)}0\phantom{3}\\16\overline{)240}\\\end{array}
Use the 2^{nd} digit 4 from dividend 240
\begin{array}{l}\phantom{16)}01\phantom{4}\\16\overline{)240}\\\phantom{16)}\underline{\phantom{}16\phantom{9}}\\\phantom{16)9}8\\\end{array}
Find closest multiple of 16 to 24. We see that 1 \times 16 = 16 is the nearest. Now subtract 16 from 24 to get reminder 8. Add 1 to quotient.
\begin{array}{l}\phantom{16)}01\phantom{5}\\16\overline{)240}\\\phantom{16)}\underline{\phantom{}16\phantom{9}}\\\phantom{16)9}80\\\end{array}
Use the 3^{rd} digit 0 from dividend 240
\begin{array}{l}\phantom{16)}015\phantom{6}\\16\overline{)240}\\\phantom{16)}\underline{\phantom{}16\phantom{9}}\\\phantom{16)9}80\\\phantom{16)}\underline{\phantom{9}80\phantom{}}\\\phantom{16)999}0\\\end{array}
Find closest multiple of 16 to 80. We see that 5 \times 16 = 80 is the nearest. Now subtract 80 from 80 to get reminder 0. Add 5 to quotient.
\text{Quotient: }15 \text{Reminder: }0
Since 0 is less than 16, stop the division. The reminder is 0. The topmost line 015 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 15.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}