Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{24x\left(x^{3}+1\right)^{\frac{3}{2}}-3x^{4}\times 72\left(x^{3}+1\right)^{\frac{7}{2}}}{16\left(x^{3}+1\right)^{\frac{3}{2}}}
To multiply powers of the same base, add their exponents. Add 2 and 2 to get 4.
\frac{24x\left(x^{3}+1\right)^{\frac{3}{2}}-216x^{4}\left(x^{3}+1\right)^{\frac{7}{2}}}{16\left(x^{3}+1\right)^{\frac{3}{2}}}
Multiply 3 and 72 to get 216.
\frac{24x\left(x^{3}+1\right)^{\frac{3}{2}}\left(-9x^{9}-18x^{6}-9x^{3}+1\right)}{16\left(x^{3}+1\right)^{\frac{3}{2}}}
Factor the expressions that are not already factored.
\frac{3x\left(-9x^{9}-18x^{6}-9x^{3}+1\right)}{2}
Cancel out 8\left(x^{3}+1\right)^{\frac{3}{2}} in both numerator and denominator.
\frac{-27x^{10}-54x^{7}-27x^{4}+3x}{2}
Expand the expression.
factor(\frac{24x\left(x^{3}+1\right)^{\frac{3}{2}}-3x^{4}\times 72\left(x^{3}+1\right)^{\frac{7}{2}}}{16\left(x^{3}+1\right)^{\frac{3}{2}}})
To multiply powers of the same base, add their exponents. Add 2 and 2 to get 4.
factor(\frac{24x\left(x^{3}+1\right)^{\frac{3}{2}}-216x^{4}\left(x^{3}+1\right)^{\frac{7}{2}}}{16\left(x^{3}+1\right)^{\frac{3}{2}}})
Multiply 3 and 72 to get 216.
factor(\frac{24x\left(x^{3}+1\right)^{\frac{3}{2}}\left(-9x^{9}-18x^{6}-9x^{3}+1\right)}{16\left(x^{3}+1\right)^{\frac{3}{2}}})
Factor the expressions that are not already factored in \frac{24x\left(x^{3}+1\right)^{\frac{3}{2}}-216x^{4}\left(x^{3}+1\right)^{\frac{7}{2}}}{16\left(x^{3}+1\right)^{\frac{3}{2}}}.
factor(\frac{3x\left(-9x^{9}-18x^{6}-9x^{3}+1\right)}{2})
Cancel out 8\left(x^{3}+1\right)^{\frac{3}{2}} in both numerator and denominator.
factor(\frac{-27x^{10}-54x^{7}-27x^{4}+3x}{2})
Use the distributive property to multiply 3x by -9x^{9}-18x^{6}-9x^{3}+1.
3\left(-9x^{10}-18x^{7}-9x^{4}+x\right)
Consider -27x^{10}-54x^{7}-27x^{4}+3x. Factor out 3.
x\left(-9x^{9}-18x^{6}-9x^{3}+1\right)
Consider -9x^{10}-18x^{7}-9x^{4}+x. Factor out x.
\frac{3x\left(-9x^{9}-18x^{6}-9x^{3}+1\right)}{2}
Rewrite the complete factored expression. Simplify. Polynomial -9x^{9}-18x^{6}-9x^{3}+1 is not factored since it does not have any rational roots.