Evaluate
-\frac{27x^{10}}{2}-27x^{7}-\frac{27x^{4}}{2}+\frac{3x}{2}
Factor
\frac{3x\left(1-9x^{3}-18x^{6}-9x^{9}\right)}{2}
Graph
Share
Copied to clipboard
\frac{24x\left(x^{3}+1\right)^{\frac{3}{2}}-3x^{4}\times 72\left(x^{3}+1\right)^{\frac{7}{2}}}{16\left(x^{3}+1\right)^{\frac{3}{2}}}
To multiply powers of the same base, add their exponents. Add 2 and 2 to get 4.
\frac{24x\left(x^{3}+1\right)^{\frac{3}{2}}-216x^{4}\left(x^{3}+1\right)^{\frac{7}{2}}}{16\left(x^{3}+1\right)^{\frac{3}{2}}}
Multiply 3 and 72 to get 216.
\frac{24x\left(x^{3}+1\right)^{\frac{3}{2}}\left(-9x^{9}-18x^{6}-9x^{3}+1\right)}{16\left(x^{3}+1\right)^{\frac{3}{2}}}
Factor the expressions that are not already factored.
\frac{3x\left(-9x^{9}-18x^{6}-9x^{3}+1\right)}{2}
Cancel out 8\left(x^{3}+1\right)^{\frac{3}{2}} in both numerator and denominator.
\frac{-27x^{10}-54x^{7}-27x^{4}+3x}{2}
Expand the expression.
factor(\frac{24x\left(x^{3}+1\right)^{\frac{3}{2}}-3x^{4}\times 72\left(x^{3}+1\right)^{\frac{7}{2}}}{16\left(x^{3}+1\right)^{\frac{3}{2}}})
To multiply powers of the same base, add their exponents. Add 2 and 2 to get 4.
factor(\frac{24x\left(x^{3}+1\right)^{\frac{3}{2}}-216x^{4}\left(x^{3}+1\right)^{\frac{7}{2}}}{16\left(x^{3}+1\right)^{\frac{3}{2}}})
Multiply 3 and 72 to get 216.
factor(\frac{24x\left(x^{3}+1\right)^{\frac{3}{2}}\left(-9x^{9}-18x^{6}-9x^{3}+1\right)}{16\left(x^{3}+1\right)^{\frac{3}{2}}})
Factor the expressions that are not already factored in \frac{24x\left(x^{3}+1\right)^{\frac{3}{2}}-216x^{4}\left(x^{3}+1\right)^{\frac{7}{2}}}{16\left(x^{3}+1\right)^{\frac{3}{2}}}.
factor(\frac{3x\left(-9x^{9}-18x^{6}-9x^{3}+1\right)}{2})
Cancel out 8\left(x^{3}+1\right)^{\frac{3}{2}} in both numerator and denominator.
factor(\frac{-27x^{10}-54x^{7}-27x^{4}+3x}{2})
Use the distributive property to multiply 3x by -9x^{9}-18x^{6}-9x^{3}+1.
3\left(-9x^{10}-18x^{7}-9x^{4}+x\right)
Consider -27x^{10}-54x^{7}-27x^{4}+3x. Factor out 3.
x\left(-9x^{9}-18x^{6}-9x^{3}+1\right)
Consider -9x^{10}-18x^{7}-9x^{4}+x. Factor out x.
\frac{3x\left(-9x^{9}-18x^{6}-9x^{3}+1\right)}{2}
Rewrite the complete factored expression. Simplify. Polynomial -9x^{9}-18x^{6}-9x^{3}+1 is not factored since it does not have any rational roots.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}