Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{24x\left(x^{3}+1\right)^{\frac{3}{2}}-3x^{4}\times 12x^{3}\left(x^{3}+1\right)^{\frac{3}{2}}}{16\left(x^{3}+1\right)^{\frac{3}{2}}}
To multiply powers of the same base, add their exponents. Add 2 and 2 to get 4.
\frac{24x\left(x^{3}+1\right)^{\frac{3}{2}}-3x^{7}\times 12\left(x^{3}+1\right)^{\frac{3}{2}}}{16\left(x^{3}+1\right)^{\frac{3}{2}}}
To multiply powers of the same base, add their exponents. Add 4 and 3 to get 7.
\frac{24x\left(x^{3}+1\right)^{\frac{3}{2}}-36x^{7}\left(x^{3}+1\right)^{\frac{3}{2}}}{16\left(x^{3}+1\right)^{\frac{3}{2}}}
Multiply 3 and 12 to get 36.
\frac{12x\left(x^{3}+1\right)^{\frac{3}{2}}\left(-3x^{6}+2\right)}{16\left(x^{3}+1\right)^{\frac{3}{2}}}
Factor the expressions that are not already factored.
\frac{3x\left(-3x^{6}+2\right)}{4}
Cancel out 4\left(x^{3}+1\right)^{\frac{3}{2}} in both numerator and denominator.
\frac{-9x^{7}+6x}{4}
Expand the expression.
factor(\frac{24x\left(x^{3}+1\right)^{\frac{3}{2}}-3x^{4}\times 12x^{3}\left(x^{3}+1\right)^{\frac{3}{2}}}{16\left(x^{3}+1\right)^{\frac{3}{2}}})
To multiply powers of the same base, add their exponents. Add 2 and 2 to get 4.
factor(\frac{24x\left(x^{3}+1\right)^{\frac{3}{2}}-3x^{7}\times 12\left(x^{3}+1\right)^{\frac{3}{2}}}{16\left(x^{3}+1\right)^{\frac{3}{2}}})
To multiply powers of the same base, add their exponents. Add 4 and 3 to get 7.
factor(\frac{24x\left(x^{3}+1\right)^{\frac{3}{2}}-36x^{7}\left(x^{3}+1\right)^{\frac{3}{2}}}{16\left(x^{3}+1\right)^{\frac{3}{2}}})
Multiply 3 and 12 to get 36.
factor(\frac{12x\left(x^{3}+1\right)^{\frac{3}{2}}\left(-3x^{6}+2\right)}{16\left(x^{3}+1\right)^{\frac{3}{2}}})
Factor the expressions that are not already factored in \frac{24x\left(x^{3}+1\right)^{\frac{3}{2}}-36x^{7}\left(x^{3}+1\right)^{\frac{3}{2}}}{16\left(x^{3}+1\right)^{\frac{3}{2}}}.
factor(\frac{3x\left(-3x^{6}+2\right)}{4})
Cancel out 4\left(x^{3}+1\right)^{\frac{3}{2}} in both numerator and denominator.
factor(\frac{-9x^{7}+6x}{4})
Use the distributive property to multiply 3x by -3x^{6}+2.
3\left(-3x^{7}+2x\right)
Consider -9x^{7}+6x. Factor out 3.
x\left(-3x^{6}+2\right)
Consider -3x^{7}+2x. Factor out x.
\frac{3x\left(-3x^{6}+2\right)}{4}
Rewrite the complete factored expression. Simplify. Polynomial -3x^{6}+2 is not factored since it does not have any rational roots.