Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{24m^{3}-2m}{1-2m\sqrt{3}}
Multiply -1 and 2 to get -2.
\frac{\left(24m^{3}-2m\right)\left(1+2m\sqrt{3}\right)}{\left(1-2m\sqrt{3}\right)\left(1+2m\sqrt{3}\right)}
Rationalize the denominator of \frac{24m^{3}-2m}{1-2m\sqrt{3}} by multiplying numerator and denominator by 1+2m\sqrt{3}.
\frac{\left(24m^{3}-2m\right)\left(1+2m\sqrt{3}\right)}{1^{2}-\left(-2m\sqrt{3}\right)^{2}}
Consider \left(1-2m\sqrt{3}\right)\left(1+2m\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(24m^{3}-2m\right)\left(1+2m\sqrt{3}\right)}{1-\left(-2m\sqrt{3}\right)^{2}}
Calculate 1 to the power of 2 and get 1.
\frac{\left(24m^{3}-2m\right)\left(1+2m\sqrt{3}\right)}{1-\left(-2\right)^{2}m^{2}\left(\sqrt{3}\right)^{2}}
Expand \left(-2m\sqrt{3}\right)^{2}.
\frac{\left(24m^{3}-2m\right)\left(1+2m\sqrt{3}\right)}{1-4m^{2}\left(\sqrt{3}\right)^{2}}
Calculate -2 to the power of 2 and get 4.
\frac{\left(24m^{3}-2m\right)\left(1+2m\sqrt{3}\right)}{1-4m^{2}\times 3}
The square of \sqrt{3} is 3.
\frac{\left(24m^{3}-2m\right)\left(1+2m\sqrt{3}\right)}{1-12m^{2}}
Multiply 4 and 3 to get 12.
\frac{2m\left(2\sqrt{3}m+1\right)\left(12m^{2}-1\right)}{-12m^{2}+1}
Factor the expressions that are not already factored.
\frac{-2m\left(2\sqrt{3}m+1\right)\left(-12m^{2}+1\right)}{-12m^{2}+1}
Extract the negative sign in 12m^{2}-1.
-2m\left(2\sqrt{3}m+1\right)
Cancel out -12m^{2}+1 in both numerator and denominator.
-4\sqrt{3}m^{2}-2m
Expand the expression.
factor(\frac{24m^{3}-2m}{1-2m\sqrt{3}})
Multiply -1 and 2 to get -2.
factor(\frac{\left(24m^{3}-2m\right)\left(1+2m\sqrt{3}\right)}{\left(1-2m\sqrt{3}\right)\left(1+2m\sqrt{3}\right)})
Rationalize the denominator of \frac{24m^{3}-2m}{1-2m\sqrt{3}} by multiplying numerator and denominator by 1+2m\sqrt{3}.
factor(\frac{\left(24m^{3}-2m\right)\left(1+2m\sqrt{3}\right)}{1^{2}-\left(-2m\sqrt{3}\right)^{2}})
Consider \left(1-2m\sqrt{3}\right)\left(1+2m\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
factor(\frac{\left(24m^{3}-2m\right)\left(1+2m\sqrt{3}\right)}{1-\left(-2m\sqrt{3}\right)^{2}})
Calculate 1 to the power of 2 and get 1.
factor(\frac{\left(24m^{3}-2m\right)\left(1+2m\sqrt{3}\right)}{1-\left(-2\right)^{2}m^{2}\left(\sqrt{3}\right)^{2}})
Expand \left(-2m\sqrt{3}\right)^{2}.
factor(\frac{\left(24m^{3}-2m\right)\left(1+2m\sqrt{3}\right)}{1-4m^{2}\left(\sqrt{3}\right)^{2}})
Calculate -2 to the power of 2 and get 4.
factor(\frac{\left(24m^{3}-2m\right)\left(1+2m\sqrt{3}\right)}{1-4m^{2}\times 3})
The square of \sqrt{3} is 3.
factor(\frac{\left(24m^{3}-2m\right)\left(1+2m\sqrt{3}\right)}{1-12m^{2}})
Multiply 4 and 3 to get 12.
factor(\frac{2m\left(2\sqrt{3}m+1\right)\left(12m^{2}-1\right)}{-12m^{2}+1})
Factor the expressions that are not already factored in \frac{\left(24m^{3}-2m\right)\left(1+2m\sqrt{3}\right)}{1-12m^{2}}.
factor(\frac{-2m\left(2\sqrt{3}m+1\right)\left(-12m^{2}+1\right)}{-12m^{2}+1})
Extract the negative sign in 12m^{2}-1.
factor(-2m\left(2\sqrt{3}m+1\right))
Cancel out -12m^{2}+1 in both numerator and denominator.
factor(-4\sqrt{3}m^{2}-2m)
Expand the expression.
2\left(-2\sqrt{3}m^{2}-m\right)
Factor out 2.
m\left(-2\sqrt{3}m-1\right)
Consider -2\sqrt{3}m^{2}-m. Factor out m.
2m\left(-2\sqrt{3}m-1\right)
Rewrite the complete factored expression.