Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(x-4\right)\left(24-5x\right)+\left(2-x\right)\left(8x-49\right)=\left(x-4\right)\times 28+\left(x-4\right)\left(x-2\right)\left(-13\right)
Variable x cannot be equal to any of the values 2,4 since division by zero is not defined. Multiply both sides of the equation by \left(x-4\right)\left(x-2\right), the least common multiple of x-2,4-x.
44x-5x^{2}-96+\left(2-x\right)\left(8x-49\right)=\left(x-4\right)\times 28+\left(x-4\right)\left(x-2\right)\left(-13\right)
Use the distributive property to multiply x-4 by 24-5x and combine like terms.
44x-5x^{2}-96+65x-98-8x^{2}=\left(x-4\right)\times 28+\left(x-4\right)\left(x-2\right)\left(-13\right)
Use the distributive property to multiply 2-x by 8x-49 and combine like terms.
109x-5x^{2}-96-98-8x^{2}=\left(x-4\right)\times 28+\left(x-4\right)\left(x-2\right)\left(-13\right)
Combine 44x and 65x to get 109x.
109x-5x^{2}-194-8x^{2}=\left(x-4\right)\times 28+\left(x-4\right)\left(x-2\right)\left(-13\right)
Subtract 98 from -96 to get -194.
109x-13x^{2}-194=\left(x-4\right)\times 28+\left(x-4\right)\left(x-2\right)\left(-13\right)
Combine -5x^{2} and -8x^{2} to get -13x^{2}.
109x-13x^{2}-194=28x-112+\left(x-4\right)\left(x-2\right)\left(-13\right)
Use the distributive property to multiply x-4 by 28.
109x-13x^{2}-194=28x-112+\left(x^{2}-6x+8\right)\left(-13\right)
Use the distributive property to multiply x-4 by x-2 and combine like terms.
109x-13x^{2}-194=28x-112-13x^{2}+78x-104
Use the distributive property to multiply x^{2}-6x+8 by -13.
109x-13x^{2}-194=106x-112-13x^{2}-104
Combine 28x and 78x to get 106x.
109x-13x^{2}-194=106x-216-13x^{2}
Subtract 104 from -112 to get -216.
109x-13x^{2}-194-106x=-216-13x^{2}
Subtract 106x from both sides.
3x-13x^{2}-194=-216-13x^{2}
Combine 109x and -106x to get 3x.
3x-13x^{2}-194+13x^{2}=-216
Add 13x^{2} to both sides.
3x-194=-216
Combine -13x^{2} and 13x^{2} to get 0.
3x=-216+194
Add 194 to both sides.
3x=-22
Add -216 and 194 to get -22.
x=\frac{-22}{3}
Divide both sides by 3.
x=-\frac{22}{3}
Fraction \frac{-22}{3} can be rewritten as -\frac{22}{3} by extracting the negative sign.