Solve for y
y = -\frac{24}{5} = -4\frac{4}{5} = -4.8
Graph
Share
Copied to clipboard
2\times 24+y\times 16=6y
Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 2y, the least common multiple of y,2.
48+y\times 16=6y
Multiply 2 and 24 to get 48.
48+y\times 16-6y=0
Subtract 6y from both sides.
48+10y=0
Combine y\times 16 and -6y to get 10y.
10y=-48
Subtract 48 from both sides. Anything subtracted from zero gives its negation.
y=\frac{-48}{10}
Divide both sides by 10.
y=-\frac{24}{5}
Reduce the fraction \frac{-48}{10} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}