Solve for x
x=\frac{20}{33}\approx 0.606060606
Graph
Share
Copied to clipboard
60\times 24+x\times 24=2400x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 60x, the least common multiple of x,60.
1440+x\times 24=2400x
Multiply 60 and 24 to get 1440.
1440+x\times 24-2400x=0
Subtract 2400x from both sides.
1440-2376x=0
Combine x\times 24 and -2400x to get -2376x.
-2376x=-1440
Subtract 1440 from both sides. Anything subtracted from zero gives its negation.
x=\frac{-1440}{-2376}
Divide both sides by -2376.
x=\frac{20}{33}
Reduce the fraction \frac{-1440}{-2376} to lowest terms by extracting and canceling out -72.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}