Solve for x
x=-54
x=6
Graph
Share
Copied to clipboard
-\left(18+x\right)\times 24-\left(x-18\right)\times 24=\left(x-18\right)\left(x+18\right)
Variable x cannot be equal to any of the values -18,18 since division by zero is not defined. Multiply both sides of the equation by \left(x-18\right)\left(x+18\right), the least common multiple of 18-x,18+x.
\left(-18-x\right)\times 24-\left(x-18\right)\times 24=\left(x-18\right)\left(x+18\right)
To find the opposite of 18+x, find the opposite of each term.
-432-24x-\left(x-18\right)\times 24=\left(x-18\right)\left(x+18\right)
Use the distributive property to multiply -18-x by 24.
-432-24x-\left(24x-432\right)=\left(x-18\right)\left(x+18\right)
Use the distributive property to multiply x-18 by 24.
-432-24x-24x+432=\left(x-18\right)\left(x+18\right)
To find the opposite of 24x-432, find the opposite of each term.
-432-48x+432=\left(x-18\right)\left(x+18\right)
Combine -24x and -24x to get -48x.
-48x=\left(x-18\right)\left(x+18\right)
Add -432 and 432 to get 0.
-48x=x^{2}-324
Consider \left(x-18\right)\left(x+18\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 18.
-48x-x^{2}=-324
Subtract x^{2} from both sides.
-48x-x^{2}+324=0
Add 324 to both sides.
-x^{2}-48x+324=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-48\right)±\sqrt{\left(-48\right)^{2}-4\left(-1\right)\times 324}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -48 for b, and 324 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-48\right)±\sqrt{2304-4\left(-1\right)\times 324}}{2\left(-1\right)}
Square -48.
x=\frac{-\left(-48\right)±\sqrt{2304+4\times 324}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-48\right)±\sqrt{2304+1296}}{2\left(-1\right)}
Multiply 4 times 324.
x=\frac{-\left(-48\right)±\sqrt{3600}}{2\left(-1\right)}
Add 2304 to 1296.
x=\frac{-\left(-48\right)±60}{2\left(-1\right)}
Take the square root of 3600.
x=\frac{48±60}{2\left(-1\right)}
The opposite of -48 is 48.
x=\frac{48±60}{-2}
Multiply 2 times -1.
x=\frac{108}{-2}
Now solve the equation x=\frac{48±60}{-2} when ± is plus. Add 48 to 60.
x=-54
Divide 108 by -2.
x=-\frac{12}{-2}
Now solve the equation x=\frac{48±60}{-2} when ± is minus. Subtract 60 from 48.
x=6
Divide -12 by -2.
x=-54 x=6
The equation is now solved.
-\left(18+x\right)\times 24-\left(x-18\right)\times 24=\left(x-18\right)\left(x+18\right)
Variable x cannot be equal to any of the values -18,18 since division by zero is not defined. Multiply both sides of the equation by \left(x-18\right)\left(x+18\right), the least common multiple of 18-x,18+x.
\left(-18-x\right)\times 24-\left(x-18\right)\times 24=\left(x-18\right)\left(x+18\right)
To find the opposite of 18+x, find the opposite of each term.
-432-24x-\left(x-18\right)\times 24=\left(x-18\right)\left(x+18\right)
Use the distributive property to multiply -18-x by 24.
-432-24x-\left(24x-432\right)=\left(x-18\right)\left(x+18\right)
Use the distributive property to multiply x-18 by 24.
-432-24x-24x+432=\left(x-18\right)\left(x+18\right)
To find the opposite of 24x-432, find the opposite of each term.
-432-48x+432=\left(x-18\right)\left(x+18\right)
Combine -24x and -24x to get -48x.
-48x=\left(x-18\right)\left(x+18\right)
Add -432 and 432 to get 0.
-48x=x^{2}-324
Consider \left(x-18\right)\left(x+18\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 18.
-48x-x^{2}=-324
Subtract x^{2} from both sides.
-x^{2}-48x=-324
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}-48x}{-1}=-\frac{324}{-1}
Divide both sides by -1.
x^{2}+\left(-\frac{48}{-1}\right)x=-\frac{324}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}+48x=-\frac{324}{-1}
Divide -48 by -1.
x^{2}+48x=324
Divide -324 by -1.
x^{2}+48x+24^{2}=324+24^{2}
Divide 48, the coefficient of the x term, by 2 to get 24. Then add the square of 24 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+48x+576=324+576
Square 24.
x^{2}+48x+576=900
Add 324 to 576.
\left(x+24\right)^{2}=900
Factor x^{2}+48x+576. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+24\right)^{2}}=\sqrt{900}
Take the square root of both sides of the equation.
x+24=30 x+24=-30
Simplify.
x=6 x=-54
Subtract 24 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}