Evaluate
\frac{793}{2178}\approx 0.3640955
Factor
\frac{13 \cdot 61}{2 \cdot 3 ^ {2} \cdot 11 ^ {2}} = 0.3640955004591368
Share
Copied to clipboard
\frac{3}{2}\times \frac{3}{11}-\frac{7}{121}\times \frac{7}{9}
Reduce the fraction \frac{24}{16} to lowest terms by extracting and canceling out 8.
\frac{3\times 3}{2\times 11}-\frac{7}{121}\times \frac{7}{9}
Multiply \frac{3}{2} times \frac{3}{11} by multiplying numerator times numerator and denominator times denominator.
\frac{9}{22}-\frac{7}{121}\times \frac{7}{9}
Do the multiplications in the fraction \frac{3\times 3}{2\times 11}.
\frac{9}{22}-\frac{7\times 7}{121\times 9}
Multiply \frac{7}{121} times \frac{7}{9} by multiplying numerator times numerator and denominator times denominator.
\frac{9}{22}-\frac{49}{1089}
Do the multiplications in the fraction \frac{7\times 7}{121\times 9}.
\frac{891}{2178}-\frac{98}{2178}
Least common multiple of 22 and 1089 is 2178. Convert \frac{9}{22} and \frac{49}{1089} to fractions with denominator 2178.
\frac{891-98}{2178}
Since \frac{891}{2178} and \frac{98}{2178} have the same denominator, subtract them by subtracting their numerators.
\frac{793}{2178}
Subtract 98 from 891 to get 793.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}