Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(24\sqrt{2}+36\right)\left(27\sqrt{2}-36\right)}{\left(27\sqrt{2}+36\right)\left(27\sqrt{2}-36\right)}
Rationalize the denominator of \frac{24\sqrt{2}+36}{27\sqrt{2}+36} by multiplying numerator and denominator by 27\sqrt{2}-36.
\frac{\left(24\sqrt{2}+36\right)\left(27\sqrt{2}-36\right)}{\left(27\sqrt{2}\right)^{2}-36^{2}}
Consider \left(27\sqrt{2}+36\right)\left(27\sqrt{2}-36\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(24\sqrt{2}+36\right)\left(27\sqrt{2}-36\right)}{27^{2}\left(\sqrt{2}\right)^{2}-36^{2}}
Expand \left(27\sqrt{2}\right)^{2}.
\frac{\left(24\sqrt{2}+36\right)\left(27\sqrt{2}-36\right)}{729\left(\sqrt{2}\right)^{2}-36^{2}}
Calculate 27 to the power of 2 and get 729.
\frac{\left(24\sqrt{2}+36\right)\left(27\sqrt{2}-36\right)}{729\times 2-36^{2}}
The square of \sqrt{2} is 2.
\frac{\left(24\sqrt{2}+36\right)\left(27\sqrt{2}-36\right)}{1458-36^{2}}
Multiply 729 and 2 to get 1458.
\frac{\left(24\sqrt{2}+36\right)\left(27\sqrt{2}-36\right)}{1458-1296}
Calculate 36 to the power of 2 and get 1296.
\frac{\left(24\sqrt{2}+36\right)\left(27\sqrt{2}-36\right)}{162}
Subtract 1296 from 1458 to get 162.
\frac{648\left(\sqrt{2}\right)^{2}-864\sqrt{2}+972\sqrt{2}-1296}{162}
Apply the distributive property by multiplying each term of 24\sqrt{2}+36 by each term of 27\sqrt{2}-36.
\frac{648\times 2-864\sqrt{2}+972\sqrt{2}-1296}{162}
The square of \sqrt{2} is 2.
\frac{1296-864\sqrt{2}+972\sqrt{2}-1296}{162}
Multiply 648 and 2 to get 1296.
\frac{1296+108\sqrt{2}-1296}{162}
Combine -864\sqrt{2} and 972\sqrt{2} to get 108\sqrt{2}.
\frac{108\sqrt{2}}{162}
Subtract 1296 from 1296 to get 0.
\frac{2}{3}\sqrt{2}
Divide 108\sqrt{2} by 162 to get \frac{2}{3}\sqrt{2}.