Evaluate
\frac{7957199}{4302986}\approx 1.849227258
Factor
\frac{1033 \cdot 7703}{2 \cdot 31 \cdot 69403} = 1\frac{3654213}{4302986} = 1.8492272575369755
Share
Copied to clipboard
\begin{array}{l}\phantom{12908958)}\phantom{1}\\12908958\overline{)23871597}\\\end{array}
Use the 1^{st} digit 2 from dividend 23871597
\begin{array}{l}\phantom{12908958)}0\phantom{2}\\12908958\overline{)23871597}\\\end{array}
Since 2 is less than 12908958, use the next digit 3 from dividend 23871597 and add 0 to the quotient
\begin{array}{l}\phantom{12908958)}0\phantom{3}\\12908958\overline{)23871597}\\\end{array}
Use the 2^{nd} digit 3 from dividend 23871597
\begin{array}{l}\phantom{12908958)}00\phantom{4}\\12908958\overline{)23871597}\\\end{array}
Since 23 is less than 12908958, use the next digit 8 from dividend 23871597 and add 0 to the quotient
\begin{array}{l}\phantom{12908958)}00\phantom{5}\\12908958\overline{)23871597}\\\end{array}
Use the 3^{rd} digit 8 from dividend 23871597
\begin{array}{l}\phantom{12908958)}000\phantom{6}\\12908958\overline{)23871597}\\\end{array}
Since 238 is less than 12908958, use the next digit 7 from dividend 23871597 and add 0 to the quotient
\begin{array}{l}\phantom{12908958)}000\phantom{7}\\12908958\overline{)23871597}\\\end{array}
Use the 4^{th} digit 7 from dividend 23871597
\begin{array}{l}\phantom{12908958)}0000\phantom{8}\\12908958\overline{)23871597}\\\end{array}
Since 2387 is less than 12908958, use the next digit 1 from dividend 23871597 and add 0 to the quotient
\begin{array}{l}\phantom{12908958)}0000\phantom{9}\\12908958\overline{)23871597}\\\end{array}
Use the 5^{th} digit 1 from dividend 23871597
\begin{array}{l}\phantom{12908958)}00000\phantom{10}\\12908958\overline{)23871597}\\\end{array}
Since 23871 is less than 12908958, use the next digit 5 from dividend 23871597 and add 0 to the quotient
\begin{array}{l}\phantom{12908958)}00000\phantom{11}\\12908958\overline{)23871597}\\\end{array}
Use the 6^{th} digit 5 from dividend 23871597
\begin{array}{l}\phantom{12908958)}000000\phantom{12}\\12908958\overline{)23871597}\\\end{array}
Since 238715 is less than 12908958, use the next digit 9 from dividend 23871597 and add 0 to the quotient
\begin{array}{l}\phantom{12908958)}000000\phantom{13}\\12908958\overline{)23871597}\\\end{array}
Use the 7^{th} digit 9 from dividend 23871597
\begin{array}{l}\phantom{12908958)}0000000\phantom{14}\\12908958\overline{)23871597}\\\end{array}
Since 2387159 is less than 12908958, use the next digit 7 from dividend 23871597 and add 0 to the quotient
\begin{array}{l}\phantom{12908958)}0000000\phantom{15}\\12908958\overline{)23871597}\\\end{array}
Use the 8^{th} digit 7 from dividend 23871597
\begin{array}{l}\phantom{12908958)}00000001\phantom{16}\\12908958\overline{)23871597}\\\phantom{12908958)}\underline{\phantom{}12908958\phantom{}}\\\phantom{12908958)}10962639\\\end{array}
Find closest multiple of 12908958 to 23871597. We see that 1 \times 12908958 = 12908958 is the nearest. Now subtract 12908958 from 23871597 to get reminder 10962639. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }10962639
Since 10962639 is less than 12908958, stop the division. The reminder is 10962639. The topmost line 00000001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}