Evaluate
\frac{119}{90}\approx 1.322222222
Factor
\frac{7 \cdot 17}{2 \cdot 3 ^ {2} \cdot 5} = 1\frac{29}{90} = 1.3222222222222222
Share
Copied to clipboard
\begin{array}{l}\phantom{180)}\phantom{1}\\180\overline{)238}\\\end{array}
Use the 1^{st} digit 2 from dividend 238
\begin{array}{l}\phantom{180)}0\phantom{2}\\180\overline{)238}\\\end{array}
Since 2 is less than 180, use the next digit 3 from dividend 238 and add 0 to the quotient
\begin{array}{l}\phantom{180)}0\phantom{3}\\180\overline{)238}\\\end{array}
Use the 2^{nd} digit 3 from dividend 238
\begin{array}{l}\phantom{180)}00\phantom{4}\\180\overline{)238}\\\end{array}
Since 23 is less than 180, use the next digit 8 from dividend 238 and add 0 to the quotient
\begin{array}{l}\phantom{180)}00\phantom{5}\\180\overline{)238}\\\end{array}
Use the 3^{rd} digit 8 from dividend 238
\begin{array}{l}\phantom{180)}001\phantom{6}\\180\overline{)238}\\\phantom{180)}\underline{\phantom{}180\phantom{}}\\\phantom{180)9}58\\\end{array}
Find closest multiple of 180 to 238. We see that 1 \times 180 = 180 is the nearest. Now subtract 180 from 238 to get reminder 58. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }58
Since 58 is less than 180, stop the division. The reminder is 58. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}