Evaluate
\frac{593}{352}\approx 1.684659091
Factor
\frac{593}{2 ^ {5} \cdot 11} = 1\frac{241}{352} = 1.6846590909090908
Share
Copied to clipboard
\begin{array}{l}\phantom{1408)}\phantom{1}\\1408\overline{)2372}\\\end{array}
Use the 1^{st} digit 2 from dividend 2372
\begin{array}{l}\phantom{1408)}0\phantom{2}\\1408\overline{)2372}\\\end{array}
Since 2 is less than 1408, use the next digit 3 from dividend 2372 and add 0 to the quotient
\begin{array}{l}\phantom{1408)}0\phantom{3}\\1408\overline{)2372}\\\end{array}
Use the 2^{nd} digit 3 from dividend 2372
\begin{array}{l}\phantom{1408)}00\phantom{4}\\1408\overline{)2372}\\\end{array}
Since 23 is less than 1408, use the next digit 7 from dividend 2372 and add 0 to the quotient
\begin{array}{l}\phantom{1408)}00\phantom{5}\\1408\overline{)2372}\\\end{array}
Use the 3^{rd} digit 7 from dividend 2372
\begin{array}{l}\phantom{1408)}000\phantom{6}\\1408\overline{)2372}\\\end{array}
Since 237 is less than 1408, use the next digit 2 from dividend 2372 and add 0 to the quotient
\begin{array}{l}\phantom{1408)}000\phantom{7}\\1408\overline{)2372}\\\end{array}
Use the 4^{th} digit 2 from dividend 2372
\begin{array}{l}\phantom{1408)}0001\phantom{8}\\1408\overline{)2372}\\\phantom{1408)}\underline{\phantom{}1408\phantom{}}\\\phantom{1408)9}964\\\end{array}
Find closest multiple of 1408 to 2372. We see that 1 \times 1408 = 1408 is the nearest. Now subtract 1408 from 2372 to get reminder 964. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }964
Since 964 is less than 1408, stop the division. The reminder is 964. The topmost line 0001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}