Evaluate
\frac{79}{20}=3.95
Factor
\frac{79}{2 ^ {2} \cdot 5} = 3\frac{19}{20} = 3.95
Share
Copied to clipboard
\begin{array}{l}\phantom{60)}\phantom{1}\\60\overline{)237}\\\end{array}
Use the 1^{st} digit 2 from dividend 237
\begin{array}{l}\phantom{60)}0\phantom{2}\\60\overline{)237}\\\end{array}
Since 2 is less than 60, use the next digit 3 from dividend 237 and add 0 to the quotient
\begin{array}{l}\phantom{60)}0\phantom{3}\\60\overline{)237}\\\end{array}
Use the 2^{nd} digit 3 from dividend 237
\begin{array}{l}\phantom{60)}00\phantom{4}\\60\overline{)237}\\\end{array}
Since 23 is less than 60, use the next digit 7 from dividend 237 and add 0 to the quotient
\begin{array}{l}\phantom{60)}00\phantom{5}\\60\overline{)237}\\\end{array}
Use the 3^{rd} digit 7 from dividend 237
\begin{array}{l}\phantom{60)}003\phantom{6}\\60\overline{)237}\\\phantom{60)}\underline{\phantom{}180\phantom{}}\\\phantom{60)9}57\\\end{array}
Find closest multiple of 60 to 237. We see that 3 \times 60 = 180 is the nearest. Now subtract 180 from 237 to get reminder 57. Add 3 to quotient.
\text{Quotient: }3 \text{Reminder: }57
Since 57 is less than 60, stop the division. The reminder is 57. The topmost line 003 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}