Evaluate
\frac{232}{75}\approx 3.093333333
Factor
\frac{2 ^ {3} \cdot 29}{3 \cdot 5 ^ {2}} = 3\frac{7}{75} = 3.0933333333333333
Share
Copied to clipboard
\begin{array}{l}\phantom{75)}\phantom{1}\\75\overline{)232}\\\end{array}
Use the 1^{st} digit 2 from dividend 232
\begin{array}{l}\phantom{75)}0\phantom{2}\\75\overline{)232}\\\end{array}
Since 2 is less than 75, use the next digit 3 from dividend 232 and add 0 to the quotient
\begin{array}{l}\phantom{75)}0\phantom{3}\\75\overline{)232}\\\end{array}
Use the 2^{nd} digit 3 from dividend 232
\begin{array}{l}\phantom{75)}00\phantom{4}\\75\overline{)232}\\\end{array}
Since 23 is less than 75, use the next digit 2 from dividend 232 and add 0 to the quotient
\begin{array}{l}\phantom{75)}00\phantom{5}\\75\overline{)232}\\\end{array}
Use the 3^{rd} digit 2 from dividend 232
\begin{array}{l}\phantom{75)}003\phantom{6}\\75\overline{)232}\\\phantom{75)}\underline{\phantom{}225\phantom{}}\\\phantom{75)99}7\\\end{array}
Find closest multiple of 75 to 232. We see that 3 \times 75 = 225 is the nearest. Now subtract 225 from 232 to get reminder 7. Add 3 to quotient.
\text{Quotient: }3 \text{Reminder: }7
Since 7 is less than 75, stop the division. The reminder is 7. The topmost line 003 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}