Evaluate
\frac{231}{16}=14.4375
Factor
\frac{3 \cdot 7 \cdot 11}{2 ^ {4}} = 14\frac{7}{16} = 14.4375
Share
Copied to clipboard
\begin{array}{l}\phantom{16)}\phantom{1}\\16\overline{)231}\\\end{array}
Use the 1^{st} digit 2 from dividend 231
\begin{array}{l}\phantom{16)}0\phantom{2}\\16\overline{)231}\\\end{array}
Since 2 is less than 16, use the next digit 3 from dividend 231 and add 0 to the quotient
\begin{array}{l}\phantom{16)}0\phantom{3}\\16\overline{)231}\\\end{array}
Use the 2^{nd} digit 3 from dividend 231
\begin{array}{l}\phantom{16)}01\phantom{4}\\16\overline{)231}\\\phantom{16)}\underline{\phantom{}16\phantom{9}}\\\phantom{16)9}7\\\end{array}
Find closest multiple of 16 to 23. We see that 1 \times 16 = 16 is the nearest. Now subtract 16 from 23 to get reminder 7. Add 1 to quotient.
\begin{array}{l}\phantom{16)}01\phantom{5}\\16\overline{)231}\\\phantom{16)}\underline{\phantom{}16\phantom{9}}\\\phantom{16)9}71\\\end{array}
Use the 3^{rd} digit 1 from dividend 231
\begin{array}{l}\phantom{16)}014\phantom{6}\\16\overline{)231}\\\phantom{16)}\underline{\phantom{}16\phantom{9}}\\\phantom{16)9}71\\\phantom{16)}\underline{\phantom{9}64\phantom{}}\\\phantom{16)99}7\\\end{array}
Find closest multiple of 16 to 71. We see that 4 \times 16 = 64 is the nearest. Now subtract 64 from 71 to get reminder 7. Add 4 to quotient.
\text{Quotient: }14 \text{Reminder: }7
Since 7 is less than 16, stop the division. The reminder is 7. The topmost line 014 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 14.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}