Solve for k (complex solution)
k\in \mathrm{C}
Solve for k
k\in \mathrm{R}
Share
Copied to clipboard
23-3k+2\times 1\left(4k+6\right)=35+5k
Multiply both sides of the equation by 5.
23-3k+2\left(4k+6\right)=35+5k
Multiply 2 and 1 to get 2.
23-3k+8k+12=35+5k
Use the distributive property to multiply 2 by 4k+6.
23+5k+12=35+5k
Combine -3k and 8k to get 5k.
35+5k=35+5k
Add 23 and 12 to get 35.
35+5k-5k=35
Subtract 5k from both sides.
35=35
Combine 5k and -5k to get 0.
\text{true}
Compare 35 and 35.
k\in \mathrm{C}
This is true for any k.
23-3k+2\times 1\left(4k+6\right)=35+5k
Multiply both sides of the equation by 5.
23-3k+2\left(4k+6\right)=35+5k
Multiply 2 and 1 to get 2.
23-3k+8k+12=35+5k
Use the distributive property to multiply 2 by 4k+6.
23+5k+12=35+5k
Combine -3k and 8k to get 5k.
35+5k=35+5k
Add 23 and 12 to get 35.
35+5k-5k=35
Subtract 5k from both sides.
35=35
Combine 5k and -5k to get 0.
\text{true}
Compare 35 and 35.
k\in \mathrm{R}
This is true for any k.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}