Solve for k_123 (complex solution)
\left\{\begin{matrix}k_{123}=-\frac{7\left(287k-40\right)}{23ℏ}\text{, }&ℏ\neq 0\\k_{123}\in \mathrm{C}\text{, }&k=\frac{40}{287}\text{ and }ℏ=0\end{matrix}\right.
Solve for k
k=-\frac{23k_{123}ℏ}{2009}+\frac{40}{287}
Solve for k_123
\left\{\begin{matrix}k_{123}=-\frac{7\left(287k-40\right)}{23ℏ}\text{, }&ℏ\neq 0\\k_{123}\in \mathrm{R}\text{, }&k=\frac{40}{287}\text{ and }ℏ=0\end{matrix}\right.
Share
Copied to clipboard
\frac{23}{7}k_{123}ℏ=40-287k
Subtract 287k from both sides.
\frac{23ℏ}{7}k_{123}=40-287k
The equation is in standard form.
\frac{7\times \frac{23ℏ}{7}k_{123}}{23ℏ}=\frac{7\left(40-287k\right)}{23ℏ}
Divide both sides by \frac{23}{7}ℏ.
k_{123}=\frac{7\left(40-287k\right)}{23ℏ}
Dividing by \frac{23}{7}ℏ undoes the multiplication by \frac{23}{7}ℏ.
287k=40-\frac{23}{7}k_{123}ℏ
Subtract \frac{23}{7}k_{123}ℏ from both sides.
287k=-\frac{23k_{123}ℏ}{7}+40
The equation is in standard form.
\frac{287k}{287}=\frac{-\frac{23k_{123}ℏ}{7}+40}{287}
Divide both sides by 287.
k=\frac{-\frac{23k_{123}ℏ}{7}+40}{287}
Dividing by 287 undoes the multiplication by 287.
k=-\frac{23k_{123}ℏ}{2009}+\frac{40}{287}
Divide 40-\frac{23k_{123}ℏ}{7} by 287.
\frac{23}{7}k_{123}ℏ=40-287k
Subtract 287k from both sides.
\frac{23ℏ}{7}k_{123}=40-287k
The equation is in standard form.
\frac{7\times \frac{23ℏ}{7}k_{123}}{23ℏ}=\frac{7\left(40-287k\right)}{23ℏ}
Divide both sides by \frac{23}{7}ℏ.
k_{123}=\frac{7\left(40-287k\right)}{23ℏ}
Dividing by \frac{23}{7}ℏ undoes the multiplication by \frac{23}{7}ℏ.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}