Evaluate
\frac{299}{84}\approx 3.55952381
Factor
\frac{13 \cdot 23}{2 ^ {2} \cdot 3 \cdot 7} = 3\frac{47}{84} = 3.5595238095238093
Share
Copied to clipboard
\frac{23}{7}-\left(-\frac{11}{21}\right)+\frac{-7}{14}-\frac{-7}{28}
Fraction \frac{-11}{21} can be rewritten as -\frac{11}{21} by extracting the negative sign.
\frac{23}{7}+\frac{11}{21}+\frac{-7}{14}-\frac{-7}{28}
The opposite of -\frac{11}{21} is \frac{11}{21}.
\frac{69}{21}+\frac{11}{21}+\frac{-7}{14}-\frac{-7}{28}
Least common multiple of 7 and 21 is 21. Convert \frac{23}{7} and \frac{11}{21} to fractions with denominator 21.
\frac{69+11}{21}+\frac{-7}{14}-\frac{-7}{28}
Since \frac{69}{21} and \frac{11}{21} have the same denominator, add them by adding their numerators.
\frac{80}{21}+\frac{-7}{14}-\frac{-7}{28}
Add 69 and 11 to get 80.
\frac{80}{21}-\frac{1}{2}-\frac{-7}{28}
Reduce the fraction \frac{-7}{14} to lowest terms by extracting and canceling out 7.
\frac{160}{42}-\frac{21}{42}-\frac{-7}{28}
Least common multiple of 21 and 2 is 42. Convert \frac{80}{21} and \frac{1}{2} to fractions with denominator 42.
\frac{160-21}{42}-\frac{-7}{28}
Since \frac{160}{42} and \frac{21}{42} have the same denominator, subtract them by subtracting their numerators.
\frac{139}{42}-\frac{-7}{28}
Subtract 21 from 160 to get 139.
\frac{139}{42}-\left(-\frac{1}{4}\right)
Reduce the fraction \frac{-7}{28} to lowest terms by extracting and canceling out 7.
\frac{139}{42}+\frac{1}{4}
The opposite of -\frac{1}{4} is \frac{1}{4}.
\frac{278}{84}+\frac{21}{84}
Least common multiple of 42 and 4 is 84. Convert \frac{139}{42} and \frac{1}{4} to fractions with denominator 84.
\frac{278+21}{84}
Since \frac{278}{84} and \frac{21}{84} have the same denominator, add them by adding their numerators.
\frac{299}{84}
Add 278 and 21 to get 299.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}