Evaluate
\frac{2229}{2224}\approx 1.002248201
Factor
\frac{3 \cdot 743}{2 ^ {4} \cdot 139} = 1\frac{5}{2224} = 1.002248201438849
Share
Copied to clipboard
\begin{array}{l}\phantom{2224)}\phantom{1}\\2224\overline{)2229}\\\end{array}
Use the 1^{st} digit 2 from dividend 2229
\begin{array}{l}\phantom{2224)}0\phantom{2}\\2224\overline{)2229}\\\end{array}
Since 2 is less than 2224, use the next digit 2 from dividend 2229 and add 0 to the quotient
\begin{array}{l}\phantom{2224)}0\phantom{3}\\2224\overline{)2229}\\\end{array}
Use the 2^{nd} digit 2 from dividend 2229
\begin{array}{l}\phantom{2224)}00\phantom{4}\\2224\overline{)2229}\\\end{array}
Since 22 is less than 2224, use the next digit 2 from dividend 2229 and add 0 to the quotient
\begin{array}{l}\phantom{2224)}00\phantom{5}\\2224\overline{)2229}\\\end{array}
Use the 3^{rd} digit 2 from dividend 2229
\begin{array}{l}\phantom{2224)}000\phantom{6}\\2224\overline{)2229}\\\end{array}
Since 222 is less than 2224, use the next digit 9 from dividend 2229 and add 0 to the quotient
\begin{array}{l}\phantom{2224)}000\phantom{7}\\2224\overline{)2229}\\\end{array}
Use the 4^{th} digit 9 from dividend 2229
\begin{array}{l}\phantom{2224)}0001\phantom{8}\\2224\overline{)2229}\\\phantom{2224)}\underline{\phantom{}2224\phantom{}}\\\phantom{2224)999}5\\\end{array}
Find closest multiple of 2224 to 2229. We see that 1 \times 2224 = 2224 is the nearest. Now subtract 2224 from 2229 to get reminder 5. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }5
Since 5 is less than 2224, stop the division. The reminder is 5. The topmost line 0001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}