Factor
\frac{2a\left(121a^{3}+78\right)}{143}
Evaluate
\frac{22a^{4}}{13}+\frac{12a}{11}
Share
Copied to clipboard
\frac{2\left(121a^{4}+78a\right)}{143}
Factor out \frac{2}{143}.
a\left(121a^{3}+78\right)
Consider 121a^{4}+78a. Factor out a.
\frac{2a\left(121a^{3}+78\right)}{143}
Rewrite the complete factored expression. Polynomial 121a^{3}+78 is not factored since it does not have any rational roots.
\frac{11\times 22a^{4}}{143}+\frac{13\times 12a}{143}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 13 and 11 is 143. Multiply \frac{22a^{4}}{13} times \frac{11}{11}. Multiply \frac{12a}{11} times \frac{13}{13}.
\frac{11\times 22a^{4}+13\times 12a}{143}
Since \frac{11\times 22a^{4}}{143} and \frac{13\times 12a}{143} have the same denominator, add them by adding their numerators.
\frac{242a^{4}+156a}{143}
Do the multiplications in 11\times 22a^{4}+13\times 12a.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}