Skip to main content
Solve for γ
Tick mark Image

Similar Problems from Web Search

Share

\gamma ^{2}=4\times \frac{7}{22}
Multiply both sides by \frac{7}{22}, the reciprocal of \frac{22}{7}.
\gamma ^{2}=\frac{14}{11}
Multiply 4 and \frac{7}{22} to get \frac{14}{11}.
\gamma =\frac{\sqrt{154}}{11} \gamma =-\frac{\sqrt{154}}{11}
Take the square root of both sides of the equation.
\gamma ^{2}=4\times \frac{7}{22}
Multiply both sides by \frac{7}{22}, the reciprocal of \frac{22}{7}.
\gamma ^{2}=\frac{14}{11}
Multiply 4 and \frac{7}{22} to get \frac{14}{11}.
\gamma ^{2}-\frac{14}{11}=0
Subtract \frac{14}{11} from both sides.
\gamma =\frac{0±\sqrt{0^{2}-4\left(-\frac{14}{11}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -\frac{14}{11} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
\gamma =\frac{0±\sqrt{-4\left(-\frac{14}{11}\right)}}{2}
Square 0.
\gamma =\frac{0±\sqrt{\frac{56}{11}}}{2}
Multiply -4 times -\frac{14}{11}.
\gamma =\frac{0±\frac{2\sqrt{154}}{11}}{2}
Take the square root of \frac{56}{11}.
\gamma =\frac{\sqrt{154}}{11}
Now solve the equation \gamma =\frac{0±\frac{2\sqrt{154}}{11}}{2} when ± is plus.
\gamma =-\frac{\sqrt{154}}{11}
Now solve the equation \gamma =\frac{0±\frac{2\sqrt{154}}{11}}{2} when ± is minus.
\gamma =\frac{\sqrt{154}}{11} \gamma =-\frac{\sqrt{154}}{11}
The equation is now solved.