Solve for h
h = \frac{1568}{9} = 174\frac{2}{9} \approx 174.222222222
Share
Copied to clipboard
\frac{22\times 3}{7\times 2}\times \frac{3}{2}\times 14=\frac{22}{7}\times \frac{11}{2}\times \frac{11}{2}\times 14-\frac{22}{7}\times \frac{3}{2}\times \frac{3}{2}h
Multiply \frac{22}{7} times \frac{3}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{66}{14}\times \frac{3}{2}\times 14=\frac{22}{7}\times \frac{11}{2}\times \frac{11}{2}\times 14-\frac{22}{7}\times \frac{3}{2}\times \frac{3}{2}h
Do the multiplications in the fraction \frac{22\times 3}{7\times 2}.
\frac{33}{7}\times \frac{3}{2}\times 14=\frac{22}{7}\times \frac{11}{2}\times \frac{11}{2}\times 14-\frac{22}{7}\times \frac{3}{2}\times \frac{3}{2}h
Reduce the fraction \frac{66}{14} to lowest terms by extracting and canceling out 2.
\frac{33\times 3}{7\times 2}\times 14=\frac{22}{7}\times \frac{11}{2}\times \frac{11}{2}\times 14-\frac{22}{7}\times \frac{3}{2}\times \frac{3}{2}h
Multiply \frac{33}{7} times \frac{3}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{99}{14}\times 14=\frac{22}{7}\times \frac{11}{2}\times \frac{11}{2}\times 14-\frac{22}{7}\times \frac{3}{2}\times \frac{3}{2}h
Do the multiplications in the fraction \frac{33\times 3}{7\times 2}.
99=\frac{22}{7}\times \frac{11}{2}\times \frac{11}{2}\times 14-\frac{22}{7}\times \frac{3}{2}\times \frac{3}{2}h
Cancel out 14 and 14.
99=\frac{22\times 11}{7\times 2}\times \frac{11}{2}\times 14-\frac{22}{7}\times \frac{3}{2}\times \frac{3}{2}h
Multiply \frac{22}{7} times \frac{11}{2} by multiplying numerator times numerator and denominator times denominator.
99=\frac{242}{14}\times \frac{11}{2}\times 14-\frac{22}{7}\times \frac{3}{2}\times \frac{3}{2}h
Do the multiplications in the fraction \frac{22\times 11}{7\times 2}.
99=\frac{121}{7}\times \frac{11}{2}\times 14-\frac{22}{7}\times \frac{3}{2}\times \frac{3}{2}h
Reduce the fraction \frac{242}{14} to lowest terms by extracting and canceling out 2.
99=\frac{121\times 11}{7\times 2}\times 14-\frac{22}{7}\times \frac{3}{2}\times \frac{3}{2}h
Multiply \frac{121}{7} times \frac{11}{2} by multiplying numerator times numerator and denominator times denominator.
99=\frac{1331}{14}\times 14-\frac{22}{7}\times \frac{3}{2}\times \frac{3}{2}h
Do the multiplications in the fraction \frac{121\times 11}{7\times 2}.
99=1331-\frac{22}{7}\times \frac{3}{2}\times \frac{3}{2}h
Cancel out 14 and 14.
99=1331-\frac{22\times 3}{7\times 2}\times \frac{3}{2}h
Multiply \frac{22}{7} times \frac{3}{2} by multiplying numerator times numerator and denominator times denominator.
99=1331-\frac{66}{14}\times \frac{3}{2}h
Do the multiplications in the fraction \frac{22\times 3}{7\times 2}.
99=1331-\frac{33}{7}\times \frac{3}{2}h
Reduce the fraction \frac{66}{14} to lowest terms by extracting and canceling out 2.
99=1331-\frac{33\times 3}{7\times 2}h
Multiply \frac{33}{7} times \frac{3}{2} by multiplying numerator times numerator and denominator times denominator.
99=1331-\frac{99}{14}h
Do the multiplications in the fraction \frac{33\times 3}{7\times 2}.
1331-\frac{99}{14}h=99
Swap sides so that all variable terms are on the left hand side.
-\frac{99}{14}h=99-1331
Subtract 1331 from both sides.
-\frac{99}{14}h=-1232
Subtract 1331 from 99 to get -1232.
h=-1232\left(-\frac{14}{99}\right)
Multiply both sides by -\frac{14}{99}, the reciprocal of -\frac{99}{14}.
h=\frac{-1232\left(-14\right)}{99}
Express -1232\left(-\frac{14}{99}\right) as a single fraction.
h=\frac{17248}{99}
Multiply -1232 and -14 to get 17248.
h=\frac{1568}{9}
Reduce the fraction \frac{17248}{99} to lowest terms by extracting and canceling out 11.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}