Verify
false
Share
Copied to clipboard
\frac{11}{3}=\frac{3}{11}\times \frac{3\times 24+28}{24}\text{ and }\frac{3}{11}\times \frac{3\times 24+28}{24}=\frac{3\times 6+7}{6}
Reduce the fraction \frac{22}{6} to lowest terms by extracting and canceling out 2.
\frac{11}{3}=\frac{3}{11}\times \frac{72+28}{24}\text{ and }\frac{3}{11}\times \frac{3\times 24+28}{24}=\frac{3\times 6+7}{6}
Multiply 3 and 24 to get 72.
\frac{11}{3}=\frac{3}{11}\times \frac{100}{24}\text{ and }\frac{3}{11}\times \frac{3\times 24+28}{24}=\frac{3\times 6+7}{6}
Add 72 and 28 to get 100.
\frac{11}{3}=\frac{3}{11}\times \frac{25}{6}\text{ and }\frac{3}{11}\times \frac{3\times 24+28}{24}=\frac{3\times 6+7}{6}
Reduce the fraction \frac{100}{24} to lowest terms by extracting and canceling out 4.
\frac{11}{3}=\frac{3\times 25}{11\times 6}\text{ and }\frac{3}{11}\times \frac{3\times 24+28}{24}=\frac{3\times 6+7}{6}
Multiply \frac{3}{11} times \frac{25}{6} by multiplying numerator times numerator and denominator times denominator.
\frac{11}{3}=\frac{75}{66}\text{ and }\frac{3}{11}\times \frac{3\times 24+28}{24}=\frac{3\times 6+7}{6}
Do the multiplications in the fraction \frac{3\times 25}{11\times 6}.
\frac{11}{3}=\frac{25}{22}\text{ and }\frac{3}{11}\times \frac{3\times 24+28}{24}=\frac{3\times 6+7}{6}
Reduce the fraction \frac{75}{66} to lowest terms by extracting and canceling out 3.
\frac{242}{66}=\frac{75}{66}\text{ and }\frac{3}{11}\times \frac{3\times 24+28}{24}=\frac{3\times 6+7}{6}
Least common multiple of 3 and 22 is 66. Convert \frac{11}{3} and \frac{25}{22} to fractions with denominator 66.
\text{false}\text{ and }\frac{3}{11}\times \frac{3\times 24+28}{24}=\frac{3\times 6+7}{6}
Compare \frac{242}{66} and \frac{75}{66}.
\text{false}\text{ and }\frac{3}{11}\times \frac{72+28}{24}=\frac{3\times 6+7}{6}
Multiply 3 and 24 to get 72.
\text{false}\text{ and }\frac{3}{11}\times \frac{100}{24}=\frac{3\times 6+7}{6}
Add 72 and 28 to get 100.
\text{false}\text{ and }\frac{3}{11}\times \frac{25}{6}=\frac{3\times 6+7}{6}
Reduce the fraction \frac{100}{24} to lowest terms by extracting and canceling out 4.
\text{false}\text{ and }\frac{3\times 25}{11\times 6}=\frac{3\times 6+7}{6}
Multiply \frac{3}{11} times \frac{25}{6} by multiplying numerator times numerator and denominator times denominator.
\text{false}\text{ and }\frac{75}{66}=\frac{3\times 6+7}{6}
Do the multiplications in the fraction \frac{3\times 25}{11\times 6}.
\text{false}\text{ and }\frac{25}{22}=\frac{3\times 6+7}{6}
Reduce the fraction \frac{75}{66} to lowest terms by extracting and canceling out 3.
\text{false}\text{ and }\frac{25}{22}=\frac{18+7}{6}
Multiply 3 and 6 to get 18.
\text{false}\text{ and }\frac{25}{22}=\frac{25}{6}
Add 18 and 7 to get 25.
\text{false}\text{ and }\frac{75}{66}=\frac{275}{66}
Least common multiple of 22 and 6 is 66. Convert \frac{25}{22} and \frac{25}{6} to fractions with denominator 66.
\text{false}\text{ and }\text{false}
Compare \frac{75}{66} and \frac{275}{66}.
\text{false}
The conjunction of \text{false} and \text{false} is \text{false}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}