Skip to main content
Solve for c
Tick mark Image

Similar Problems from Web Search

Share

\frac{22}{27}+c-c^{2}<0
Subtract c^{2} from both sides.
-\frac{22}{27}-c+c^{2}>0
Multiply the inequality by -1 to make the coefficient of the highest power in \frac{22}{27}+c-c^{2} positive. Since -1 is negative, the inequality direction is changed.
-\frac{22}{27}-c+c^{2}=0
To solve the inequality, factor the left hand side. Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
c=\frac{-\left(-1\right)±\sqrt{\left(-1\right)^{2}-4\times 1\left(-\frac{22}{27}\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, -1 for b, and -\frac{22}{27} for c in the quadratic formula.
c=\frac{1±\frac{1}{9}\sqrt{345}}{2}
Do the calculations.
c=\frac{\sqrt{345}}{18}+\frac{1}{2} c=-\frac{\sqrt{345}}{18}+\frac{1}{2}
Solve the equation c=\frac{1±\frac{1}{9}\sqrt{345}}{2} when ± is plus and when ± is minus.
\left(c-\left(\frac{\sqrt{345}}{18}+\frac{1}{2}\right)\right)\left(c-\left(-\frac{\sqrt{345}}{18}+\frac{1}{2}\right)\right)>0
Rewrite the inequality by using the obtained solutions.
c-\left(\frac{\sqrt{345}}{18}+\frac{1}{2}\right)<0 c-\left(-\frac{\sqrt{345}}{18}+\frac{1}{2}\right)<0
For the product to be positive, c-\left(\frac{\sqrt{345}}{18}+\frac{1}{2}\right) and c-\left(-\frac{\sqrt{345}}{18}+\frac{1}{2}\right) have to be both negative or both positive. Consider the case when c-\left(\frac{\sqrt{345}}{18}+\frac{1}{2}\right) and c-\left(-\frac{\sqrt{345}}{18}+\frac{1}{2}\right) are both negative.
c<-\frac{\sqrt{345}}{18}+\frac{1}{2}
The solution satisfying both inequalities is c<-\frac{\sqrt{345}}{18}+\frac{1}{2}.
c-\left(-\frac{\sqrt{345}}{18}+\frac{1}{2}\right)>0 c-\left(\frac{\sqrt{345}}{18}+\frac{1}{2}\right)>0
Consider the case when c-\left(\frac{\sqrt{345}}{18}+\frac{1}{2}\right) and c-\left(-\frac{\sqrt{345}}{18}+\frac{1}{2}\right) are both positive.
c>\frac{\sqrt{345}}{18}+\frac{1}{2}
The solution satisfying both inequalities is c>\frac{\sqrt{345}}{18}+\frac{1}{2}.
c<-\frac{\sqrt{345}}{18}+\frac{1}{2}\text{; }c>\frac{\sqrt{345}}{18}+\frac{1}{2}
The final solution is the union of the obtained solutions.